Glutamate-positive corticocortical neurons in the somatic sensory areas I and II of cats. 1988

F Conti, and M Fabri, and T Manzoni
Institute of Human Physiology, University of Ancona, Italy.

Combined retrograde transport-immunocytochemical experiments were carried out on cats to study the morphology, laminar distribution, and percentages of corticocortical projecting neurons of somatosensory area I (SI) and II (SII) showing immunoreactivity to an antiserum raised against the amino acid glutamate (Glu). A previously characterized anti-Glu serum (Conti et al., 1987a, b; Hepler et al., 1987) was used in conjunction with HRP. This tracer was injected either in SI to label retrogradely neurons in ipsilateral SII (SII-SI association neurons) and contralateral SI (SI-SI callosal neurons) or in SII to label retrogradely neurons in ipsilateral SI (SI-SII association neurons) and contralateral SII (SII-SII callosal neurons). In sections from SI and SII processed for simultaneous visualization of Glu and HRP (Bowker et al., 1982), and containing the cells from which every one of the 4 corticocortical projections arise, 3 types of labeled neurons were observed: (1) single-labeled neurons showing the homogeneous brown immunoreaction product of Glu (Glu-positive neurons); (2) single-labeled neurons containing the granular black reaction product of retrogradely transported HRP (Glu-negative, association or callosal neurons); and (3) double-labeled neurons in which both the black HRP granules and the brown immunostaining were present (Glu-positive, association or callosal neurons). Double-labeled neurons were all pyramidal in shape and were distributed intermingled with Glu-negative corticocortical neurons in all layers of SI and SII known to give rise to association and callosal projections. Counts from 25-micron-thick sections showed that of 432 association and callosal neurons sampled from SI and SII, 214 (49.5%) were Glu-negative and 218 (50.5%) Glu-positive. In counts carried out on 5-micron-thick sections, the percentage of Glu-positive corticocortical neurons raised to about 70%. The 2 populations of single- and double-labeled corticocortical neurons showed no difference in their perikaryal cross-sectional areas. The present results show that a large fraction of association and callosal neurons of SI and SII are immunoreactive for Glu, and, therefore, these neurons probably use this excitatory amino acid, or a closely related compound, as neurotransmitter.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

F Conti, and M Fabri, and T Manzoni
June 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
F Conti, and M Fabri, and T Manzoni
October 1956, The Japanese journal of physiology,
F Conti, and M Fabri, and T Manzoni
February 1970, Experimental neurology,
F Conti, and M Fabri, and T Manzoni
September 1952, Journal of neurophysiology,
F Conti, and M Fabri, and T Manzoni
May 1989, The Journal of comparative neurology,
F Conti, and M Fabri, and T Manzoni
November 1987, The Journal of comparative neurology,
F Conti, and M Fabri, and T Manzoni
November 1956, Journal of neurophysiology,
Copied contents to your clipboard!