Induction of erythroid differentiation and modulation of gene expression by tiazofurin in K-562 leukemia cells. 1988

E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
Department of Molecular Biology, National Institute of Oncology, Budapest, Hungary.

Tiazofurin (2-beta-D-ribofuranosyl-4-thiazole-carboxamide; NSC 286193), an antitumor carbon-linked nucleoside that inhibits IMP dehydrogenase (IMP:NAD+ oxidoreductase; EC 1.1.1.205) and depletes guanylate levels, can activate the erythroid differentiation program of K-562 human leukemia cells. Tiazofurin-mediated cell differentiation is a multistep process. The inducer initiates early (less than 6 hr) metabolic changes that precede commitment to differentiation; among these early changes are decreases in IMP dehydrogenase activity and in GTP concentration, as well as alterations in the expression of certain protooncogenes (c-Ki-ras). K-562 cells do express commitment-i.e., cells exhibit differentiation without tiazofurin. Guanosine was effective in preventing the action of tiazofurin, thus providing evidence that the guanine nucleotides are critically involved in tiazofurin-initiated differentiation. Activation of transcription of the erythroid-specific gene that encodes A gamma-globin is a late (48 hr) but striking effect of tiazofurin. Down-regulation of the c-ras gene appears to be part of the complex process associated with tiazofurin-induced erythroid differentiation and relates to the perturbations of GTP metabolism.

UI MeSH Term Description Entries
D007168 IMP Dehydrogenase An enzyme that catalyzes the dehydrogenation of inosine 5'-phosphate to xanthosine 5'-phosphate in the presence of NAD. EC 1.1.1.205. Inosinic Acid Dehydrogenase,Inosine-5-Monophosphate Dehydrogenase,Acid Dehydrogenase, Inosinic,Dehydrogenase, IMP,Dehydrogenase, Inosine-5-Monophosphate,Dehydrogenase, Inosinic Acid,Inosine 5 Monophosphate Dehydrogenase
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000964 Antimetabolites, Antineoplastic Antimetabolites that are useful in cancer chemotherapy. Antineoplastic Antimetabolites

Related Publications

E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
June 1984, Cell differentiation,
E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
February 1988, Tumori,
E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
January 1991, Leukemia research,
E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
May 1990, Biochemical and biophysical research communications,
E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
April 1989, Proceedings of the National Academy of Sciences of the United States of America,
E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
October 1995, Toxicology letters,
E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
November 1983, Cancer research,
E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
January 1993, Annales pharmaceutiques francaises,
E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
May 1983, Cell differentiation,
E Olah, and Y Natsumeda, and T Ikegami, and Z Kote, and M Horanyi, and J Szelenyi, and E Paulik, and T Kremmer, and S R Hollan, and J Sugar
August 1988, Blut,
Copied contents to your clipboard!