The importance of dopaminergic neurotransmission in the hypermotility response produced by the administration of N-methyl-D-aspartic acid into the nucleus accumbens. 1988

R C Boldry, and N J Uretsky
Division of Pharmacology, Ohio State University College of Pharmacy, Columbus 43210.

The bilateral injection of N-methyl-D-aspartic acid (NMA) into the nucleus accumbens of rats has been shown to stimulate locomotor activity. This response is antagonized by drugs that interfere with dopaminergic neurotransmission, such as reserpine, alpha-methyl-p-tyrosine (AMPT) and haloperidol, suggesting that NMA may exert its effects by stimulating the release of dopamine (DA) from nerve terminals. To test this hypothesis, the ability of NMA to release endogenous DA from slices of nucleus accumbens, which were incubated in magnesium-free medium was evaluated. It was found that NMA, at concentrations of 0.1 and 1 mM, did not stimulate the release of endogenous DA from slices in magnesium-free normal medium, medium containing pargyline (to inhibit monoamine oxidase) or medium containing methylphenidate (to block the reuptake of released DA). In contrast, both amphetamine (10(-5) M) and a high potassium (20 and 40 mM) stimulated the release of endogenous dopamine. The lack of effect of NMA on the release of endogenous DA was supported by in vivo studies which showed that the injection of NMA into the nucleus accumbens, in a dose that stimulated locomotor activity, did not increase the turnover of dopamine as reflected by an increase in the concentration of DOPAC. In contrast, the direct administration of haloperidol (13 nmol) into the nucleus accumbens produced a marked increase in the concentration of DOPAC. To determine the role of activation of DA receptors in the hypermotility response to NMA, NMA was administered together with subthreshold doses of either DA or apomorphine into the nucleus accumbens of rats pretreated with AMPT.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008297 Male Males
D008781 Methyltyrosines A group of compounds that are methyl derivatives of the amino acid TYROSINE.
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D010293 Pargyline A monoamine oxidase inhibitor with antihypertensive properties. Pargyline Hydrochloride,Hydrochloride, Pargyline
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine

Related Publications

R C Boldry, and N J Uretsky
February 1984, Pharmacology, biochemistry, and behavior,
R C Boldry, and N J Uretsky
January 1993, Alcohol and alcoholism (Oxford, Oxfordshire). Supplement,
Copied contents to your clipboard!