Organization of glutamate-like immunoreactivity in the rat superficial dorsal horn: light and electron microscopic observations. 1988

K E Miller, and J R Clements, and A A Larson, and A J Beitz
Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455.

Glutamate has been shown to be a neurotransmitter in the central nervous system of vertebrates, and it has been hypothesized that glutamate is functional as a neurotransmitter in the spinal cord dorsal horn. A monoclonal antibody to fixative-modified glutamate was used in this study to examine the light microscopic and ultrastructural profiles of glutamate-like immunoreactivity in the superficial dorsal horn of the rat spinal cord. Glutamate-like immunoreactivity was observed in neurons, fibers, and terminals of both laminae I and II. Marginal zone immunoreactive neurons ranged from 10 to 30 micron in diameter and received many nonimmunoreactive somatic synapses. In substantia gelatinosa, immunoreactive neurons were observed in both inner and outer layers, ranged 5 to 10 micron in diameter, and received few nonimmunoreactive somatic synapses. Glutamate-like immunoreactive dendrites were observed in both laminae and were contacted primarily by nonimmunoreactive synaptic terminals that generally contained small clear vesicles. Both myelinated and unmyelinated immunoreactive axons were observed in Lissauer's tract. Immunoreactive terminals contained small (40 nm) clear vesicles and generally formed simple synaptic contacts with nonimmunoreactive dendrites in laminae I and II. The results of this study corroborate the importance of glutamate as a neurotransmitter in spinal sensory mechanisms.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

K E Miller, and J R Clements, and A A Larson, and A J Beitz
November 1984, Neuroscience,
K E Miller, and J R Clements, and A A Larson, and A J Beitz
July 1992, The Journal of comparative neurology,
K E Miller, and J R Clements, and A A Larson, and A J Beitz
February 1982, The Journal of comparative neurology,
K E Miller, and J R Clements, and A A Larson, and A J Beitz
August 1999, The Journal of comparative neurology,
K E Miller, and J R Clements, and A A Larson, and A J Beitz
January 1989, Neuroscience,
K E Miller, and J R Clements, and A A Larson, and A J Beitz
January 2002, Neuroscience,
K E Miller, and J R Clements, and A A Larson, and A J Beitz
February 2001, The Journal of comparative neurology,
K E Miller, and J R Clements, and A A Larson, and A J Beitz
April 1991, Journal of neurocytology,
Copied contents to your clipboard!