Dopamine and serotonin in cat retina: electroretinography and histology. 1988

W Skrandies, and H Wässle
Max-Planck-Institute for Physiological and Clinical Research, Bad Nauheim, Federal Republic of Germany.

Anatomical structures of the cat retina were related to functional changes induced by the application of dopaminergic and serotonergic substances. We report on the contribution of dopaminergic and serotonin accumulating retinal neurones to retinal activity as reflected by the electroretinogram. The effect of dopaminergic neurones was investigated by the application of the neurotoxin 6-hydroxy-dopamine (6-OHDA) which is known to destroy dopaminergic neurones, and injections of either serotonin (5-HT) or the analogue 5,6-dihydroxy-tryptamine (5,6-DHT) were used to monitor the effects of indoleamines. In control experiments aminophosphonobutyric acid (APB), an agonist of glutamate transmission, was injected. Conventional immunohistochemical methods identified dopaminergic and serotonin accumulating neurones, and the electrophysiological data obtained from the same animals were related to the anatomical structures influenced by the respective substances. Destruction of dopaminergic amacrine cells by 6-OHDA increased the ERG b-wave amplitude. Accumulation of indoleamines by certain amacrine cells also caused an increase of the ERG b-wave. However, intra-vitreal injection of APB completely blocked the b-wave. The data show that ERG mass responses can be used to monitor transmitter-specific effects on retinal circuitry.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine
D000613 Aminobutyrates Derivatives of BUTYRIC ACID that contain one or more amino groups attached to the aliphatic structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobutryrate structure. Aminobutyric Acids,Aminobutyric Acid,Acid, Aminobutyric,Acids, Aminobutyric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

W Skrandies, and H Wässle
March 1987, The Journal of comparative neurology,
W Skrandies, and H Wässle
June 1984, American journal of veterinary research,
W Skrandies, and H Wässle
January 1987, Journal of neuroscience research,
W Skrandies, and H Wässle
June 1984, Journal of neurochemistry,
W Skrandies, and H Wässle
January 1969, Acta ophthalmologica,
W Skrandies, and H Wässle
January 1962, Angiologia,
Copied contents to your clipboard!