Oxidation of malate by the mitochondrial succinate-ubiquinone reductase. 1988

Y O Belikova, and A B Kotlyar, and A D Vinogradov
Department of Biochemistry, School of Biology, Moscow State University, U.S.S.R.

The purified succinate-ubiquinone reductase catalyzes the L- (or D-) malate: acceptor oxidoreductase reaction with Km for malate of about 2.10(-3) M and initial Vmax of 50 and 100 nmol per min per mg of protein for L- and D-stereoisomers, respectively (25 degrees C, pH 7.0). The reaction rate rapidly decreases both in the absence and presence of L-glutamate and L-glutamate-oxaloacetate transaminase added for trapping of oxaloacetate. Both keto and enol forms of oxaloacetate were found to be strong, slowly dissociating inhibitors of succinate dehydrogenase; the first-order rate constant for the enzyme inhibition by the enol form is about 3 times as high as that by the keto form. Oxidation of malate by succinate dehydrogenase in the presence of the oxaloacetate trapping system occurs at an indefinitely constant rate when enoloxaloacetate, which is an immediate product of the reaction, is rapidly converted into the keto isomer--a substrate for transaminase. A quantitative kinetic scheme for malate oxidation by succinate dehydrogenase which includes two kinetically distinct enzyme-oxaloacetate complexes is proposed, and the specific role of the mitochondrial oxaloacetate keto-enol-tautomerase (EC 5.3.2.2) in the regulation of succinate dehydrogenase is suggested.

UI MeSH Term Description Entries
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008293 Malates Derivatives of malic acid (the structural formula: (COO-)2CH2CHOH), including its salts and esters.
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010071 Oxaloacetates Derivatives of OXALOACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include a 2-keto-1,4-carboxy aliphatic structure. Ketosuccinates,Oxosuccinates,Oxaloacetic Acids
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus

Related Publications

Y O Belikova, and A B Kotlyar, and A D Vinogradov
April 1988, Biokhimiia (Moscow, Russia),
Y O Belikova, and A B Kotlyar, and A D Vinogradov
December 1982, Biochimica et biophysica acta,
Y O Belikova, and A B Kotlyar, and A D Vinogradov
September 1985, Biochimica et biophysica acta,
Y O Belikova, and A B Kotlyar, and A D Vinogradov
November 1980, Biochimica et biophysica acta,
Y O Belikova, and A B Kotlyar, and A D Vinogradov
January 2001, Ryoikibetsu shokogun shirizu,
Y O Belikova, and A B Kotlyar, and A D Vinogradov
May 1991, Biochimica et biophysica acta,
Y O Belikova, and A B Kotlyar, and A D Vinogradov
February 1996, Journal of protein chemistry,
Y O Belikova, and A B Kotlyar, and A D Vinogradov
December 1986, Biokhimiia (Moscow, Russia),
Y O Belikova, and A B Kotlyar, and A D Vinogradov
January 1985, Doklady Akademii nauk SSSR,
Copied contents to your clipboard!