Inhibition of prostaglandin E1-induced activation of adenylate cyclase in human blood platelet membrane. 1988

N N Kahn, and A K Sinha
Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467.

Activation of human blood platelet adenylate cyclase is initiated through the binding of prostaglandin E1 to the membrane receptors. Incubation of platelet membrane with [3H]prostaglandin E1 at pH 7.5 in the presence of 5 mM MgCl2 showed that the binding of the autacoid was rapid, reversible and highly specific. The binding was linearly proportional to the activation of adenylate cyclase. Although the membrane-bound radioligand could not be removed either by GTP or its stable analogue 5'-guanylylimido diphosphate, 150 nM cyclic AMP displaced about 40% of the bound agonist from the membrane. Scatchard analyses of the binding of the prostanoid to the membrane in the presence or absence of cyclic AMP showed that the nucleotide specifically inhibited the high-affinity binding sites without affecting the low-affinity binding sites. Incubation of the membrane with 150 mM cyclic AMP and varying amounts of prostaglandin E1 (25 nM to 1.0 microM) showed that the percent removal of the membrane-bound autacoid was similar to the percent inhibition of adenylate cyclase at each concentration of the agonist. At a concentration of 25 nM prostaglandin E1, both the binding of the agonist and the activity of adenylate cyclase were maximally inhibited by 40%. With the increase of the agonist concentration in the assay mixture, the inhibitory effects of the nucleotide gradually decreased and at a concentration of 1.0 microM prostaglandin E1 the effect of the nucleotide became negligible. These results show that cyclic AMP inhibits the activation of adenylate cyclase by low concentrations of prostaglandin E1 through the inhibition of the binding of the agonist to high-affinity binding sites.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011982 Receptors, Prostaglandin Cell surface receptors that bind prostaglandins with high affinity and trigger intracellular changes which influence the behavior of cells. Prostaglandin receptor subtypes have been tentatively named according to their relative affinities for the endogenous prostaglandins. They include those which prefer prostaglandin D2 (DP receptors), prostaglandin E2 (EP1, EP2, and EP3 receptors), prostaglandin F2-alpha (FP receptors), and prostacyclin (IP receptors). Prostaglandin Receptors,Prostaglandin Receptor,Receptor, Prostaglandin,Receptors, Prostaglandins,Prostaglandins Receptors
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000527 Alprostadil A potent vasodilator agent that increases peripheral blood flow. PGE1,Prostaglandin E1,Caverject,Edex,Lipo-PGE1,Minprog,Muse,PGE1alpha,Prostaglandin E1alpha,Prostavasin,Prostin VR,Prostine VR,Sugiran,Vasaprostan,Viridal,Lipo PGE1

Related Publications

N N Kahn, and A K Sinha
July 1982, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
N N Kahn, and A K Sinha
September 1974, Thrombosis research,
N N Kahn, and A K Sinha
February 1982, Proceedings of the National Academy of Sciences of the United States of America,
N N Kahn, and A K Sinha
November 1973, Biochemical and biophysical research communications,
Copied contents to your clipboard!