Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging. 2018

Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA; Department of Biomedical Engineering, Sudan University of Science and Technology, Khartoum, Sudan.

H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014463 Ultrasonography The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz. Echography,Echotomography,Echotomography, Computer,Sonography, Medical,Tomography, Ultrasonic,Ultrasonic Diagnosis,Ultrasonic Imaging,Ultrasonographic Imaging,Computer Echotomography,Diagnosis, Ultrasonic,Diagnostic Ultrasound,Ultrasonic Tomography,Ultrasound Imaging,Diagnoses, Ultrasonic,Diagnostic Ultrasounds,Imaging, Ultrasonic,Imaging, Ultrasonographic,Imaging, Ultrasound,Imagings, Ultrasonographic,Imagings, Ultrasound,Medical Sonography,Ultrasonic Diagnoses,Ultrasonographic Imagings,Ultrasound, Diagnostic,Ultrasounds, Diagnostic
D016011 Normal Distribution Continuous frequency distribution of infinite range. Its properties are as follows: 1, continuous, symmetrical distribution with both tails extending to infinity; 2, arithmetic mean, mode, and median identical; and 3, shape completely determined by the mean and standard deviation. Gaussian Distribution,Distribution, Gaussian,Distribution, Normal,Distributions, Normal,Normal Distributions
D016477 Artifacts Any visible result of a procedure which is caused by the procedure itself and not by the entity being analyzed. Common examples include histological structures introduced by tissue processing, radiographic images of structures that are not naturally present in living tissue, and products of chemical reactions that occur during analysis. Artefacts,Artefact,Artifact
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D059629 Signal-To-Noise Ratio The comparison of the quantity of meaningful data to the irrelevant or incorrect data. Ratio, Signal-To-Noise,Ratios, Signal-To-Noise,Signal To Noise Ratio,Signal-To-Noise Ratios

Related Publications

Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
November 2010, Ultrasound in medicine & biology,
Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
August 2016, IEEE transactions on medical imaging,
Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
May 2004, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
January 1996, Ultrasound in medicine & biology,
Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
October 2005, Ultrasonic imaging,
Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
September 2007, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
December 2020, Ultrasonics,
Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
January 2014, Bio-medical materials and engineering,
Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
December 2022, Computers in biology and medicine,
Mawia Khairalseed, and Fangyuan Xiong, and Jung-Whan Kim, and Robert F Mattrey, and Kevin J Parker, and Kenneth Hoyt
July 2021, Ultrasonics,
Copied contents to your clipboard!