[Comparison of effects of staphylococcal nuclease A fused with different exogenous DNA fragments]. 2016

Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
Jiangsu Key Laboratory of Zoonosis, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.

Staphylococcal nuclease A (SNA) may be used to produce bacterial ghosts for further inactivation of host bacteria and elimination of residual genetic materials. It is still controversial if SNA without signal peptide can be secreted to extracellular matrix and if fusion with other peptide is required for its function in the cytoplasm of host bacteria. To clarify this dispute, a series of temperature-inducible plasmids carrying SNA alone or SNA fused with partial sequences of λ phage cro gene (cSNA) or Mycobacterium tuberculosis urease gene (uSNA) were constructed and evaluated in Escherichia coli. Results show that the percentages of inactivated E. coli by SNA, cSNA and uSNA after 4 h of induction were 99.9%, 99.8% and 74.2%, respectively. Moreover, SNA and cSNA in the cytoplasm of host bacteria were initially detectable after 30 min of induction, whereas uSNA was after 1 h. In comparison, SNA and cSNA in culture supernatant were initially detectable 1 h later, whereas uSNA was 2 h later. The nuclease activity in the cytoplasm or supernatant was ranked as follows: SNA > cSNA > uSNA, and the activity in the supernatant was significantly lower than that in the cytoplasm. Furthermore, host genomic DNA was degraded by SNA or cSNA after 2 h of induction but not by uSNA even throughout the whole experiment. In conclusion, this study indicates that SNA, cSNA and uSNA expressed in host bacteria all have nuclease activity, the enzymes can be released to culture media, and fusion with exogenous peptide negatively reduces the nuclease activity of SNA.

UI MeSH Term Description Entries
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D001433 Bacteriolysis Rupture of bacterial cells due to mechanical force, chemical action, or the lytic growth of BACTERIOPHAGES. Bacteriolyses
D021382 Protein Sorting Signals Amino acid sequences found in transported proteins that selectively guide the distribution of the proteins to specific cellular compartments. Leader Signal Peptides,Leader Peptide,Leader Sequences, Peptide,Peptide Leader Sequences,Peptide Signal Sequences,Signal Peptide,Signal Peptides,Signal Sequence, Peptide,Signal Sequences,Signal Sequences, Peptide,Leader Peptides,Leader Sequence, Peptide,Leader Signal Peptide,Peptide Leader Sequence,Peptide Signal Sequence,Peptide, Leader,Peptide, Leader Signal,Peptide, Signal,Peptides, Leader,Peptides, Leader Signal,Peptides, Signal,Protein Sorting Signal,Sequence, Peptide Leader,Sequence, Peptide Signal,Sequence, Signal,Sequences, Peptide Leader,Sequences, Peptide Signal,Sequences, Signal,Signal Peptide, Leader,Signal Peptides, Leader,Signal Sequence,Signal, Protein Sorting,Signals, Protein Sorting,Sorting Signal, Protein,Sorting Signals, Protein

Related Publications

Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
October 1967, Proceedings of the National Academy of Sciences of the United States of America,
Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
January 2002, Skin pharmacology and applied skin physiology,
Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
December 1971, The Journal of biological chemistry,
Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
February 1989, Biochemistry,
Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
April 1974, The Journal of biological chemistry,
Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
January 1970, Biochemistry,
Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
September 1967, Proceedings of the National Academy of Sciences of the United States of America,
Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
January 1995, Advances in protein chemistry,
Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
April 1974, Biochemistry,
Lixia Fu, and Dejun Ji, and Xubin Lu, and Xian'gan Han, and Wenzhi Wei
July 1975, Biochemistry,
Copied contents to your clipboard!