Probing the Escherichia coli glnALG upstream activation mechanism in vivo. 1988

S Sasse-Dwight, and J D Gralla
Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569.

In vivo "footprints" of the glnA regulatory region under activating conditions demonstrate that the three most upstream activator sequences bind the protein NRI in the cell. Together, protections at these sites span six of seven consecutive major grooves and lie on the same helix face. E sigma 54 protects two major grooves of DNA approximately 60 base pairs downstream at the glnAp2 promoter and primarily on the opposite helix face. Experiments using potassium permanganate to probe open complex formation in vivo demonstrate that NRI is absolutely required for E sigma 54 to open the promoter DNA. Together, the dimethyl sulfate and permanganate studies verify [Reitzer, L. J., Bueno, R., Cheng, W. D., Abrams, S. A., Rothstein, D. M., Hunt, T. P., Tyler, B. & Magasanik, B. (1987) J. Bacteriol. 169, 4279-4284] that E sigma 54 occupies the glnAp2 promoter in a closed complex in vivo even in the presence of excess nitrogen and the absence of NRI. Furthermore, the slow step in transcriptional activation is shown to be an NRI-dependent conformational change in the downstream promoter DNA, which results in DNA melting. These observations place interesting restrictions on models describing the mechanism by which NRI activates transcription from glnAp2 at a distance.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D005974 Glutamate-Ammonia Ligase An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2. Glutamine Synthetase,Glutamate Ammonia Ligase (ADP),Glutamate Ammonia Ligase,Ligase, Glutamate-Ammonia,Synthetase, Glutamine
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

S Sasse-Dwight, and J D Gralla
December 1985, Journal of bacteriology,
S Sasse-Dwight, and J D Gralla
January 1991, Biochemistry,
S Sasse-Dwight, and J D Gralla
April 1986, Journal of bacteriology,
S Sasse-Dwight, and J D Gralla
March 1987, Nucleic acids research,
S Sasse-Dwight, and J D Gralla
August 1993, The Journal of biological chemistry,
S Sasse-Dwight, and J D Gralla
March 1983, Journal of bacteriology,
S Sasse-Dwight, and J D Gralla
April 2012, Biophysical journal,
Copied contents to your clipboard!