Histone H1 Purification and Post-Translational Modification Profiling by High-Resolution Mass Spectrometry. 2018

Maciej Kotliński, and Andrzej Jerzmanowski
Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw, Poland.

It has proven particularly difficult to purify Linker (H1) histones from the model plant Arabidopsis thaliana. This is most likely due to its low nuclear DNA content and the abundance of substances that interfere with protein isolation. These problems have hindered the use of Arabidopsis for in-depth characterization of nuclear proteins by modern techniques based on mass spectrometry (MS). Here, we describe an improved methodology for preparing pure Arabidopsis H1s and separating them by HPLC into fractions corresponding to nonallelic variants. In addition, we outline basic approaches enabling the identification of posttranslational modifications of H1 by MS and their mapping by digestion with different proteases. We also discuss the analysis and interpretation of the acquired data.

UI MeSH Term Description Entries
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D042421 Histone Code The specific patterns of changes made to HISTONES, that are involved in assembly, maintenance, and alteration of chromatin structural states (such as EUCHROMATIN and HETEROCHROMATIN). The changes are made by various histone modification processes that include ACETYLATION; METHYLATION; PHOSPHORYLATION; and UBIQUITINATION. Histone Marks,Histone Modifications,Code, Histone,Histone Mark,Mark, Histone,Marks, Histone,Modifications, Histone
D029681 Arabidopsis Proteins Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments. Arabidopsis thaliana Proteins,Thale Cress Proteins,Proteins, Arabidopsis thaliana,thaliana Proteins, Arabidopsis

Related Publications

Maciej Kotliński, and Andrzej Jerzmanowski
February 2017, Journal of proteome research,
Maciej Kotliński, and Andrzej Jerzmanowski
January 2012, Methods in enzymology,
Maciej Kotliński, and Andrzej Jerzmanowski
January 2017, Methods in molecular biology (Clifton, N.J.),
Maciej Kotliński, and Andrzej Jerzmanowski
December 2011, Methods (San Diego, Calif.),
Maciej Kotliński, and Andrzej Jerzmanowski
September 2014, Molecular & cellular proteomics : MCP,
Maciej Kotliński, and Andrzej Jerzmanowski
March 2021, International journal for parasitology,
Maciej Kotliński, and Andrzej Jerzmanowski
October 2010, Journal of proteome research,
Maciej Kotliński, and Andrzej Jerzmanowski
November 2013, Protein expression and purification,
Copied contents to your clipboard!