Rhythmic discharge properties of caudal cochlear nucleus neurons during postnatal development in cats. 1988

E J Walsh, and J McGee
Department of Surgery, Southern Illinois University School of Medicine, Springfield 62702.

Action potentials recorded extracellularly from neurons within the caudal cochlear nuclei of developing cats exhibited distinctive temporal characteristics (i.e., rhythmic responses) in response to long-duration acoustic stimuli including both tone and noise bursts. Unlike the homogeneous response characteristics of auditory nerve fibers, cochlear nucleus neurons exhibited many variations in rhythmic discharge patterns. The majority of neurons within the caudal CN of kittens younger than 10 days of age responded rhythmically to long-duration acoustic stimuli, however, the percentage of neurons responding rhythmically steadily decreased thereafter, and by the end of the second postnatal week most tonically-responding neurons maintained sustained steady-state discharge rates throughout stimulation. Discharges of neurons recorded during the transitional ages (around 13 days) were rhythmic at low sensation levels and exhibited adultlike sustained patterns at higher levels. Using constant sensation level stimuli (re individual neuron thresholds), burst frequencies remained essentially constant during the period of development in which rhythmic responses were observed. Intervals separating discharge bursts decreased as stimulus intensities increased for all neurons studied during the relevant period, but were not related in an orderly way to stimulus frequency. The effects of intensity on response periodicity were not mimicked by altering the amount of neurotransmitter present at the postsynaptic cell through microiontophoresis of excitatory amino acids and their antagonists onto the surface of neurons within the caudal CN. In addition, some immature neurons which responded phasically to acoustic stimuli responded rhythmically during the simultaneous presentation of acoustic stimuli and neuroexcitatory agents (i.e., glutamate). These results suggest that the source of the rhythmicity is not intrinsic to neurons in the caudal CN. Based on these and other observations we conclude that the most probable source of response periodicity observed early in development is the domination of inner hair cell output by efferent projections of the olivocochlear bundle, the temporal discharge patterns of which are also periodic.

UI MeSH Term Description Entries
D008144 Loudness Perception The perceived attribute of a sound which corresponds to the physical attribute of intensity. Loudness Perceptions,Perception, Loudness,Perceptions, Loudness
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010897 Pitch Discrimination The ability to differentiate sound frequency or pitch. Discrimination, Pitch,Pitch Discriminations
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E J Walsh, and J McGee
July 1997, The Journal of comparative neurology,
E J Walsh, and J McGee
July 1961, Science (New York, N.Y.),
E J Walsh, and J McGee
May 1970, Nihon Jibiinkoka Gakkai kaiho,
E J Walsh, and J McGee
November 2000, Journal of neurophysiology,
E J Walsh, and J McGee
January 1991, Biological cybernetics,
E J Walsh, and J McGee
December 1977, The American journal of anatomy,
E J Walsh, and J McGee
December 1979, Proceedings of the National Academy of Sciences of the United States of America,
E J Walsh, and J McGee
April 1965, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
E J Walsh, and J McGee
July 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!