Possible involvement of neuropeptide Y in sympathetic vascular control of canine skeletal muscle. 1988

J Pernow, and T Kahan, and P Hjemdahl, and J M Lundberg
Department of Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Sympathetic nerve stimulation (2 min, 2 and 10 Hz) increased perfusion pressure in the blood perfused canine gracilis muscle in situ after pretreatment with atropine, desipramine and beta-adrenoceptor antagonists. This vasoconstriction was accompanied by clear-cut increases in the overflow of endogenous noradrenaline (NA) at both frequencies and, at 10 Hz but not at 2 Hz, also of neuropeptide Y-like immunoreactivity (NPY-LI). The irreversible alpha-adrenoceptor antagonist phenoxybenzamine enhanced the nerve stimulation induced overflows of NA and NPY-LI five- to eightfold and threefold, respectively. The fractional overflows of NA and NPY-LI per nerve impulse were similar in response to the high-frequency stimulation, indicating equimolar release in relation to the tissue contents of the respective neurotransmitter. The maximal vasoconstrictor response elicited by 10 Hz was reduced by about 50% following a dose of phenoxybenzamine which abolished the effect of exogenous NA and the remaining response was more long-lasting. Local i.a. infusion of NPY evoked long-lasting vasoconstriction in the presence of phenoxybenzamine, while the stable adenosine 5(1)-triphosphate (ATP) analogue alpha-beta-methylene ATP was without vascular effects. Locally infused NPY reduced the nerve stimulation evoked NA overflow by 31% (P less than 0.01) at 1 microM in arterial plasma, suggesting prejunctional inhibition of NA release. In conclusion, NPY-LI is released from the canine gracilis muscle upon sympathetic nerve stimulation at high frequencies. There is nerve stimulation evoked vasoconstriction, which is resistant to alpha-adrenoceptor blockade. This may in part be mediated by NPY released together with NA from the sympathetic vascular nerves.

UI MeSH Term Description Entries
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D003891 Desipramine A tricyclic dibenzazepine compound that potentiates neurotransmission. Desipramine selectively blocks reuptake of norepinephrine from the neural synapse, and also appears to impair serotonin transport. This compound also possesses minor anticholinergic activity, through its affinity to muscarinic receptors. Desmethylimipramine,Apo-Desipramine,Demethylimipramine,Desipramine Hydrochloride,Norpramin,Novo-Desipramine,Nu-Desipramine,PMS-Desipramine,Pertofran,Pertofrane,Pertrofran,Petylyl,Ratio-Desipramine,Apo Desipramine,Hydrochloride, Desipramine,Novo Desipramine,Nu Desipramine,PMS Desipramine,Ratio Desipramine
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic

Related Publications

J Pernow, and T Kahan, and P Hjemdahl, and J M Lundberg
April 1992, Journal of cardiovascular pharmacology,
J Pernow, and T Kahan, and P Hjemdahl, and J M Lundberg
December 1988, Regulatory peptides,
J Pernow, and T Kahan, and P Hjemdahl, and J M Lundberg
December 1985, Regulatory peptides,
J Pernow, and T Kahan, and P Hjemdahl, and J M Lundberg
January 1997, Acta physiologica Scandinavica. Supplementum,
J Pernow, and T Kahan, and P Hjemdahl, and J M Lundberg
January 2006, EXS,
J Pernow, and T Kahan, and P Hjemdahl, and J M Lundberg
September 2009, American journal of physiology. Regulatory, integrative and comparative physiology,
J Pernow, and T Kahan, and P Hjemdahl, and J M Lundberg
January 1997, Advances in experimental medicine and biology,
J Pernow, and T Kahan, and P Hjemdahl, and J M Lundberg
October 1998, Journal of applied physiology (Bethesda, Md. : 1985),
J Pernow, and T Kahan, and P Hjemdahl, and J M Lundberg
July 1985, Acta physiologica Scandinavica,
Copied contents to your clipboard!