Multilocus molecular mapping of the mouse X chromosome. 1988

L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
Roswell Park Memorial Institute, Molecular and Cellular Biology Department, Buffalo, New York 14263.

Using restriction fragment length polymorphisms (RFLPs) and enzymatic variants between distantly related mouse species, we have assigned three genes to the mouse X chromosome and concurrently mapped a total of eight genes spanning an estimated 50 cM of the chromosome. Segregation of RFLPs in over 200 male progeny from interspecies backcrosses between the inbred strain C57BL/6JRos and either wild-derived Mus musculus or Mus spretus was followed for the murine genes Timp (tissue inhibitor of metalloproteinases), Cf-8 (coagulation factor VIII), and Rsvp (red-sensitive visual pigment) and the known X-linked markers Otc, Hprt, Cf-9, G6pd, and Ags. From the centromere, the gene order was defined as Otc, Timp, Hprt, Cf-9, (Cf-8/Rsvp/G6pd), Ags, by minimizing the number of multiple recombinational events. No significant differences in map order or frequency of recombination were observed between the two backcross series studied. The use of Southern analysis has allowed us to add new genes to the map in a cumulative manner, and as probes become available, additional markers can be mapped, using the same set of mice, by utilizing existing blots or resampling the DNAs. The use of probes for functional genes has allowed us to directly compare the X chromosomes of mouse and man and has provided insight into chromosomal rearrangements which have occurred during the evolutionary divergence of these species, as well as to define the extent of linkage homologies.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009115 Muridae A family of the order Rodentia containing 250 genera including the two genera Mus (MICE) and Rattus (RATS), from which the laboratory inbred strains are developed. The fifteen subfamilies are SIGMODONTINAE (New World mice and rats), CRICETINAE, Spalacinae, Myospalacinae, Lophiomyinae, ARVICOLINAE, Platacanthomyinae, Nesomyinae, Otomyinae, Rhizomyinae, GERBILLINAE, Dendromurinae, Cricetomyinae, MURINAE (Old World mice and rats), and Hydromyinae. Murids,Murid
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
November 1995, Mammalian genome : official journal of the International Mammalian Genome Society,
L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
March 1996, Genomics,
L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
July 1992, The Journal of clinical endocrinology and metabolism,
L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
May 2011, Evolution; international journal of organic evolution,
L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
August 2016, Genetics,
L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
March 1996, Genomics,
L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
April 1991, Genomics,
L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
July 1995, Genomics,
L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
January 1983, Human genetics,
L J Mullins, and S G Grant, and D A Stephenson, and V M Chapman
December 1985, The EMBO journal,
Copied contents to your clipboard!