Fate of nucleotides bound to reconstituted Fo-F1 during adenosine 5'-triphosphate synthesis activation or hydrolysis: role of protein inhibitor and hysteretic inhibition. 1988

F Penin, and A Di Pietro, and C Godinot, and D C Gautheron
Laboratoire de Biologie et Technologie des Membranes du CNRS, Université Claude Bernard de Lyon, Villeurbanne, France.

The protein ATPase inhibitor entraps about five nucleotides in pig heart mitochondrial F1, one at least being a triphosphate [Di Pietro, A., Penin, F., Julliard, J.H., Godinot, C., & Gautheron, D.C. (1988) Biochem. Biophys. Res. Commun. 152, 1319-1325]. The fate of these nucleotides was studied during ATP synthesis driven by NADH oxidation in reconstituted inverted submitochondrial particles. Iodinated F1, containing 0.7 mol of endogenous nucleotides/mol, was first loaded with tritiated adenine nucleotides in the presence or absence of the protein inhibitor and then reassociated with F1-depleted submitochondrial particles (ASU particles) to reconstitute an efficient NADH-driven ATP synthesis. In the absence of the protein inhibitor, 1.7 mol of labeled nucleotides remained bound per mole of reassociated F1, 0.8-0.9 mol being rapidly exchangeable against medium ADP or ATP, as measured after rapid filtration through nitrocellulose filters. In the presence of the protein inhibitor, as many as 3.25 mol of labeled nucleotides remained bound per mole of reassociated F1. Under hydrolysis conditions where ATPase activity was highly inhibited, no release of tritiated nucleotide occurred. In contrast, under ATP synthesis conditions where the protonmotive force was generated by NADH oxidation, the progressive reversal of inhibition by the protein inhibitor was correlated to a concomitant release of tritiated nucleotide. When ATP synthesis became fully active, about one nucleotide was completely exchanged whereas more than three nucleotides remained tightly bound and did not appear to be directly involved in ATP synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000097795 ATPase Inhibitory Protein CA(2+) MG(2+)-ATPASE inhibitor found in membranes of mammalian ERYTHROCYTES. Epsilon Subunit, F1-ATPase,F(0)F(1)-Inhibitor Protein,F1-ATPase Epsilon Subunit,Inhibitor Factor 1, ATPase,Na-K ATPase Inhibitor
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

F Penin, and A Di Pietro, and C Godinot, and D C Gautheron
November 1981, Biochemistry,
F Penin, and A Di Pietro, and C Godinot, and D C Gautheron
September 1986, The Journal of biological chemistry,
F Penin, and A Di Pietro, and C Godinot, and D C Gautheron
September 1986, Biochimica et biophysica acta,
F Penin, and A Di Pietro, and C Godinot, and D C Gautheron
November 1980, Journal of bacteriology,
F Penin, and A Di Pietro, and C Godinot, and D C Gautheron
May 1963, The Journal of biological chemistry,
F Penin, and A Di Pietro, and C Godinot, and D C Gautheron
July 1987, Biochemistry,
F Penin, and A Di Pietro, and C Godinot, and D C Gautheron
November 1976, The Journal of biological chemistry,
F Penin, and A Di Pietro, and C Godinot, and D C Gautheron
November 1973, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!