Formation of hydroxyapatite on titanium implants in vivo precedes bone-formation during healing. 2017

Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.

The bone material interface has been an area of intense study over many decades, where studies of the healing process ranging from simple mineral deposition in vitro to actual healing in vivo have given important clues to the importance of calcium minerals in the bone/implant interface. Here, the authors use a combination of in vitro cell culture methods and in vivo implantation to study how the role of the spontaneously formed hydroxyapatite layer on Ti-implants for the in vivo-healing into the bone tissue of rat tibia. Initial experiments were made in reduced systems by incubation of TiO2 in cell culture medium and analysis by time of flight secondary ion mass spectrometry (ToF-SIMS) and energy-dispersive x-ray spectroscopy followed by subsequent exposure of human embryological stem cells analyzed by von Kossa staining and environmental scanning electron microsopy. In vivo studies of the bone-material interface was analyzed by ToF-SIMS depth profiling using both C60+ ions as well as a gas cluster ion source beam, Ar1500+ as sputter source. The low ion yield of the Ar1500+ for inorganics allowed the inorganic/organic interface of the implant to be studied avoiding the erosion of the inorganic materials caused by the conventional C60+ beam.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000066449 Human Embryonic Stem Cells A type of PLURIPOTENT STEM CELLS derived from early stage human embryos, up to and including the BLASTOCYST stage. hESC,Cells, Human Embryonic Stem,Human Embryonic Stem Cell,Stem Cells, Human Embryonic,hESCs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D013052 Spectrometry, X-Ray Emission The spectrometric analysis of fluorescent X-RAYS, i.e. X-rays emitted after bombarding matter with high energy particles such as PROTONS; ELECTRONS; or higher energy X-rays. Identification of ELEMENTS by this technique is based on the specific type of X-rays that are emitted which are characteristic of the specific elements in the material being analyzed. The characteristic X-rays are distinguished and/or quantified by either wavelength dispersive or energy dispersive methods. Particle-Induced X-Ray Emission Spectrometry,Proton-Induced X-Ray Emission Spectrometry,Spectrometry, Particle-Induced X-Ray Emission,Spectrometry, Proton-Induced X-Ray Emission,Spectrometry, X-Ray Fluorescence,X-Ray Emission Spectrometry,X-Ray Emission Spectroscopy,X-Ray Fluorescence Spectrometry,Energy Dispersive X-Ray Fluorescence Spectrometry,Energy Dispersive X-Ray Fluorescence Spectroscopy,Energy Dispersive X-Ray Spectrometry,Energy Dispersive X-Ray Spectroscopy,Particle Induced X Ray Emission Spectrometry,Proton Induced X Ray Emission Spectrometry,Spectrometry, Particle Induced X Ray Emission,Spectrometry, Proton Induced X Ray Emission,Spectrometry, Xray Emission,Wavelength Dispersive X-Ray Fluorescence Spectrometry,Wavelength Dispersive X-Ray Fluorescence Spectroscopy,Wavelength Dispersive X-Ray Spectrometry,Wavelength Dispersive X-Ray Spectroscopy,X-Ray Fluorescence Spectroscopy,Xray Emission Spectroscopy,Emission Spectrometry, X-Ray,Emission Spectrometry, Xray,Emission Spectroscopy, X-Ray,Emission Spectroscopy, Xray,Energy Dispersive X Ray Fluorescence Spectrometry,Energy Dispersive X Ray Fluorescence Spectroscopy,Energy Dispersive X Ray Spectrometry,Energy Dispersive X Ray Spectroscopy,Fluorescence Spectrometry, X-Ray,Fluorescence Spectroscopy, X-Ray,Spectrometry, X Ray Emission,Spectrometry, X Ray Fluorescence,Spectroscopy, X-Ray Emission,Spectroscopy, X-Ray Fluorescence,Spectroscopy, Xray Emission,Wavelength Dispersive X Ray Fluorescence Spectrometry,Wavelength Dispersive X Ray Fluorescence Spectroscopy,Wavelength Dispersive X Ray Spectrometry,Wavelength Dispersive X Ray Spectroscopy,X Ray Emission Spectrometry,X Ray Emission Spectroscopy,X Ray Fluorescence Spectrometry,X Ray Fluorescence Spectroscopy,X-Ray Fluorescence Spectroscopies,Xray Emission Spectrometry
D014025 Titanium A dark-gray, metallic element of widespread distribution but occurring in small amounts with atomic number, 22, atomic weight, 47.867 and symbol, Ti; specific gravity, 4.5; used for fixation of fractures.

Related Publications

Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
July 2020, ACS applied materials & interfaces,
Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
June 2017, Journal of periodontal research,
Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
January 2005, Tissue engineering,
Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
November 1990, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons,
Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
March 2006, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft,
Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
December 1999, Biomaterials,
Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
December 2008, Journal of biomedical materials research. Part A,
Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
November 1995, American journal of ophthalmology,
Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
December 1992, Journal of periodontology,
Per Malmberg, and Narmin Bigdeli, and Jens Jensen, and Håkan Nygren
December 2020, Materials (Basel, Switzerland),
Copied contents to your clipboard!