Outward rectification of inhibitory postsynaptic currents in cultured rat hippocampal neurones. 1988

J L Barker, and N L Harrison
Laboratory of Neurophysiology, NINCDS, Bethesda, MD 20892.

1. Inhibitory postsynaptic potentials (IPSPs) and currents (IPSCs) were recorded from cultured hippocampal neurones of the embryonic rat at 22 degrees C, using the whole-cell patch-clamp technique with a low-Cl-, 145 mM-potassium gluconate solution in the patch pipette. Individual synaptic events were elicited at low frequency (0.05-0.1 Hz) by stimulating a presynaptic neurone either by direct intracellular current injection, or by applying a brief pulse of L-glutamate. 2. In target neurones voltage clamped at -40 mV, outwardly directed IPSCs of mean amplitude 0.23 nA were recorded. The IPSCs were depressed by the GABA antagonist bicuculline, and reversed polarity between -50 and -80 mV (mean -64 mV), as did current responses to gamma-aminobutyric acid. The IPSPs and IPSCs reversed as a single phase; no bicuculline-resistant 'late' synaptic event was observed. 3. The IPSCs had variable kinetics, with rise times between 1 and 5 ms (mean 2.9 ms) at -40 mV, and slower, monoexponential, decay phases (decay time constant, tau IPSC, 10-40 ms at -40 mV). In some cells, tau IPSC clearly increased with depolarization. 4. The IPSC reversal potential was -64 +/- 9 mV (n = 23) under the experimental conditions used; this suggests that the synaptically activated channels are approximately 25 times more permeable to Cl- than to the gluconate anion. 5. The peak conductance associated with the IPSC showed outward rectification. The synaptic conductance measured at -40 mV was 1.7 times greater than that measured at -100 mV; at -20 mV, synaptic conductance was 2.5 times greater than at -100 mV. This outward rectification can be explained by a constant field model under these experimental conditions of asymmetric Cl- concentrations.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one

Related Publications

J L Barker, and N L Harrison
November 1984, The Journal of physiology,
J L Barker, and N L Harrison
November 1984, The Journal of physiology,
J L Barker, and N L Harrison
December 1989, Neuroscience letters,
J L Barker, and N L Harrison
October 1994, British journal of pharmacology,
Copied contents to your clipboard!