Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid. 1988

Y Ben-Ari, and M Gho
Unité 29, INSERM, Paris, France.

1. The action of a short bath application of kainic acid (KA, 200-250 nM, 3-5 min) on the CA3 region of rat hippocampal slices has been studied with intracellular and extracellular recording techniques. 2. KA evoked bursts which persisted for 10-15 min. In addition, after KA, electrical stimulation of various inputs to CA3 which elicited an EPSP-IPSP sequence in control conditions evoked an EPSP followed by a burst. This evoked response persisted for several hours after removal of KA suggesting the occurrence of a long-lasting modification of the synaptic properties of CA3 neurones. 3. Intracellular recordings showed the spontaneous and evoked bursts to consist of five to ten action potentials riding on a depolarizing shift 10-25 mV in amplitude and 40-100 ms in duration. Both spontaneous and evoked bursts were followed by a long-lasting hyperpolarization 15-25 mV in amplitude and 1-1.5 s in duration. 4. We propose that both spontaneous and evoked synchronized bursts are generated by a polysynaptic network since: (a) intracellularly recorded bursts were synchronized with the bursts in extracellular field recording; (b) bursts disappeared when synaptic transmission or Na+ action potential were blocked by cobalt (1 mM) or TTX (1 microM) respectively; (c) bursts were suppressed by elevated divalent cation concentration; (d) burst occurrence was independent of the membrane potential of the cell; (e) the depolarization shift that underlies the bursts was a linear function of the membrane potential and reversed in polarity at 0 mV. In addition, the evoked bursts were all-or-none events with a variable latency. 5. Laminar profile analysis of the spontaneous and evoked bursts suggests that they were generated by synapses located on the distal apical segments of the dendrites of CA3 pyramidal cells. 7. The persistence of the evoked bursts was neither due to a persistent change in cell excitability nor to a long-lasting reduction in GABAergic synaptic inhibition. 8. Bath application of a high concentration of potassium (7 mM) also induced spontaneous and evoked bursts; the latter also persisted several hours after return to control medium. 9. The N-methyl-D-aspartate (NMDA) antagonist, D-APV (D(-)-2-amino-5-phosphonovaleric acid) (30 microM), did not block the spontaneous discharges induced by KA or high potassium, but prevented the long-lasting effects on the synaptic responses.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

Y Ben-Ari, and M Gho
September 1989, The Journal of physiology,
Y Ben-Ari, and M Gho
July 1980, The Journal of comparative neurology,
Y Ben-Ari, and M Gho
September 2007, Journal of neurotrauma,
Y Ben-Ari, and M Gho
December 1990, British journal of pharmacology,
Copied contents to your clipboard!