[CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans]. 2017

Xi'nan Meng, and Hengda Zhou, and Suhong Xu
School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China.

The development of genome editing techniques based on CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas9 system has revolutionized biomedical researches. It can be utilized to edit genome sequence in almost any organisms including Caenorhabditis elegans, one of the most convenient and classic genetic model animals. The application of CRISPR-Cas9 mediated genome editing in C. elegans promotes the functional analysis of gene and proteins under many physiological conditions. In this mini-review, we summarized the development of CRISPR-Cas9-based genome editing in C. elegans.

UI MeSH Term Description Entries
D000072669 Gene Editing Genetic engineering or molecular biology techniques that involve DNA REPAIR mechanisms for incorporating site-specific modifications into a cell's genome. Base Editing,Genome Editing,Editing, Base,Editing, Gene,Editing, Genome
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016678 Genome The genetic complement of an organism, including all of its GENES, as represented in its DNA, or in some cases, its RNA. Genomes
D017173 Caenorhabditis elegans A species of nematode that is widely used in biological, biochemical, and genetic studies. Caenorhabditis elegan,elegan, Caenorhabditis
D064112 Clustered Regularly Interspaced Short Palindromic Repeats Repetitive nucleic acid sequences that are principal components of the archaeal and bacterial CRISPR-CAS SYSTEMS, which function as adaptive antiviral defense systems. CRISPR Arrays,CRISPR Clusters,CRISPR Elements,CRISPR Loci,CRISPR Locus,CRISPR Sequences,CRISPR Spacer Sequences,CRISPR Spacers,CRISPR-Cas Loci,CRISPRs,Clustered Regularly Interspaced Short Palindromic Repeat,Array, CRISPR,Arrays, CRISPR,CRISPR,CRISPR Array,CRISPR Cas Loci,CRISPR Cluster,CRISPR Element,CRISPR Sequence,CRISPR Spacer,CRISPR Spacer Sequence,CRISPR-Cas Locus,Cluster, CRISPR,Clusters, CRISPR,Element, CRISPR,Elements, CRISPR,Loci, CRISPR,Loci, CRISPR-Cas,Locus, CRISPR,Locus, CRISPR-Cas,Sequence, CRISPR,Sequence, CRISPR Spacer,Sequences, CRISPR,Sequences, CRISPR Spacer,Spacer Sequence, CRISPR,Spacer Sequences, CRISPR,Spacer, CRISPR,Spacers, CRISPR
D064113 CRISPR-Cas Systems Adaptive antiviral defense mechanisms, in archaea and bacteria, based on DNA repeat arrays called CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS (CRISPR elements) that function in conjunction with CRISPR-ASSOCIATED PROTEINS (Cas proteins). Several types have been distinguished, including Type I, Type II, and Type III, based on signature motifs of CRISPR-ASSOCIATED PROTEINS. CRISPR Cas Systems,CRISPR-Cas System,System, CRISPR-Cas,Systems, CRISPR-Cas

Related Publications

Xi'nan Meng, and Hengda Zhou, and Suhong Xu
November 2017, Wiley interdisciplinary reviews. Developmental biology,
Xi'nan Meng, and Hengda Zhou, and Suhong Xu
December 2023, STAR protocols,
Xi'nan Meng, and Hengda Zhou, and Suhong Xu
August 2015, Journal of genetics and genomics = Yi chuan xue bao,
Xi'nan Meng, and Hengda Zhou, and Suhong Xu
April 2016, Genesis (New York, N.Y. : 2000),
Xi'nan Meng, and Hengda Zhou, and Suhong Xu
December 2019, Current protocols in molecular biology,
Xi'nan Meng, and Hengda Zhou, and Suhong Xu
August 2014, Methods (San Diego, Calif.),
Xi'nan Meng, and Hengda Zhou, and Suhong Xu
January 2019, Bio-protocol,
Xi'nan Meng, and Hengda Zhou, and Suhong Xu
January 2019, Developmental biology,
Copied contents to your clipboard!