The kinetics of ligand binding to plant hemoglobins. Structural implications. 1989

Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
Department of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.

The rates of reaction of oxygen, carbon monoxide, and nitric oxide with 14 plant hemoglobins have been determined by relaxation and stopped-flow methods. The combination rates for oxygen lie between 0.12 and 0.26 x 10(9)/M.s, for carbon monoxide between 0.01 and 0.07 x 10(9)/M.s, and for nitric oxide between 0.12 and 0.25 x 10(9)/M.s. The dissociation velocities for oxygen range from 5 to 25/s, and for CO from 0.005 to 0.011 s. The oxygen dissociation constants range only from 36 to 78 nM. Nanosecond relaxation experiments show large differences between the proteins. Five have known primary structures which correlate closely with the nanosecond relaxations and less immediately with the millisecond reactions. The relevant amino acid substitutions are concentrated in the C-E interhelical region.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007874 Leghemoglobin A hemoglobin-like oxygen-binding hemeprotein present in the nitrogen-fixing root nodules of leguminous plants. The red pigment has a molecular weight approximately 1/4 that of hemoglobin and has been suggested to act as an oxido-reduction catalyst in symbiotic nitrogen fixation. Leghemoglobin A
D007887 Fabaceae The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family. Afzelia,Amorpha,Andira,Baptisia,Callerya,Ceratonia,Clathrotropis,Colophospermum,Copaifera,Delonix,Euchresta,Guibourtia,Legumes,Machaerium,Pithecolobium,Stryphnodendron,Leguminosae,Pea Family,Pithecellobium,Tachigalia,Families, Pea,Family, Pea,Legume,Pea Families
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein

Related Publications

Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
May 2001, Biochemistry,
Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
January 2005, Journal of inorganic biochemistry,
Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
September 1975, Comparative biochemistry and physiology. B, Comparative biochemistry,
Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
February 1990, Biochemical Society transactions,
Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
May 1967, Biochemistry,
Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
May 2022, Biochemical pharmacology,
Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
January 1973, The Journal of biological chemistry,
Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
March 2005, Biochemistry,
Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
August 1993, The Journal of biological chemistry,
Q H Gibson, and J B Wittenberg, and B A Wittenberg, and D Bogusz, and C A Appleby
November 1995, Biochemistry,
Copied contents to your clipboard!