Corin protects H2O2-induced apoptosis through PI3K/AKT and NF-κB pathway in cardiomyocytes. 2018

Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
Department of Cardiology, Shanghai Songjiang District Center Hospital, Shanghai 201600, China; Department of Cardiology, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China. Electronic address: odessasmith13431@gmail.com.

BACKGROUND The functional role of corin in H2O2-induced apoptosis is largely unexplored. The present study investigated the protective role of corin against cell injury by possible involvement of PI3K/AKT and NF-kB signaling pathways in cardiomyocytes. METHODS Cardiomyocytes H9c2 and HL-1 cells were used in the study. Cell viability was measured using CCK-8 assay; cell apoptosis was analyzed by flow cytometry, TUNEL assay, and western blot; and cell migration was measured using wound healing assay. The fluorescent intensities of reactive oxygen species (ROS) were measured using a flow cytometer. Quantitative RT-PCR was used to measure the mRNA expression of corin. Western blot was used to measure the protein expression of corin, apoptosis-related proteins (Bax, cleaved-Caspase-3 and -9), and PI3K/AKT and NF-κB signaling pathway proteins. RESULTS Treatment with H2O2 (150μM, 6h) significantly decreased cell viability and relative migration, increased apoptosis, and decreased the expression of corin in H9c2 and HL-1 cells. Overexpression of corin alleviated the H2O2-induced cell injury by increasing cell viability and migration and decreasing apoptosis in the cardiomyocytes. Overexpression of corin also decreased the ROS level in the cardiomyocytes likely through upregulating HIF-1α. These effects of corin on the cell injury might be mediated via the corin-induced activations of PI3K/AKT and NF-κB signaling pathways. CONCLUSIONS Overexpression of corin protected cardiomyocytes from H2O2-induced injury by decreasing apoptosis and ROS level via activations of the PI3K/AKT and NF-κB signaling pathways and upregulating HIF-1α.

UI MeSH Term Description Entries
D002316 Cardiotonic Agents Agents that have a strengthening effect on the heart or that can increase cardiac output. They may be CARDIAC GLYCOSIDES; SYMPATHOMIMETICS; or other drugs. They are used after MYOCARDIAL INFARCT; CARDIAC SURGICAL PROCEDURES; in SHOCK; or in congestive heart failure (HEART FAILURE). Cardiac Stimulant,Cardiac Stimulants,Cardioprotective Agent,Cardioprotective Agents,Cardiotonic,Cardiotonic Agent,Cardiotonic Drug,Inotropic Agents, Positive Cardiac,Myocardial Stimulant,Myocardial Stimulants,Cardiotonic Drugs,Cardiotonics,Agent, Cardioprotective,Agent, Cardiotonic,Drug, Cardiotonic,Stimulant, Cardiac,Stimulant, Myocardial
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
March 2014, Vascular pharmacology,
Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
September 2020, Die Pharmazie,
Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
March 2019, Molecular and cellular biochemistry,
Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
February 2013, Journal of cellular physiology,
Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
July 2019, Experimental cell research,
Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
January 2024, Journal of biochemical and molecular toxicology,
Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
May 2016, Cellular and molecular biology (Noisy-le-Grand, France),
Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
January 2022, Frontiers in cell and developmental biology,
Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
June 2018, Die Pharmazie,
Yansong Li, and Jingwen Xia, and Nianxin Jiang, and Yuqiong Xian, and Haining Ju, and Yong Wei, and Xuan Zhang
March 2021, Journal of ethnopharmacology,
Copied contents to your clipboard!