Codominant translational mutants of Chinese hamster ovary cells selected with diphtheria toxin. 1979

T J Moehring, and D E Danley, and J M Moehring

Diphtheria toxin-resistance markers in two translational mutants, CH-RE1.22c, possessing no toxin-sensitive EF-2 (class IIa), and CH-RE1.32, with 50% toxin-sensitive and 50% toxin-resistant EF-2 (class IIb), behaved codominantly in somatic cell hybrids. There was no complementation in hybrids formed between the two resistant mutants. The mutant parents and their hybrids, except those formed by fusion of CH-RE1.32 and wild-type cells, grew in the presence of toxin. To explain these results we suggest that CHO-K1 cells possess two functional copies of the gene for EF-2 and that CH-RE1.22c and CH-RE1.32 represent the homozygous (R/R) and heterozygous (R/S) states of resistance at the EF-2 gene locus. The failure of hybrids formed between CH-RE1.32 and wild-type cells to grow in toxin is a gene dosage effect. Codominant class IIa translational resistance is a selectable marker for the isolation of hybrids. It can be combined with a second, recessive, marker to provide a cell which is a "universal hybridizer" (10).

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004167 Diphtheria Toxin An ADP-ribosylating polypeptide produced by CORYNEBACTERIUM DIPHTHERIAE that causes the signs and symptoms of DIPHTHERIA. It can be broken into two unequal domains: the smaller, catalytic A domain is the lethal moiety and contains MONO(ADP-RIBOSE) TRANSFERASES which transfers ADP RIBOSE to PEPTIDE ELONGATION FACTOR 2 thereby inhibiting protein synthesis; and the larger B domain that is needed for entry into cells. Corynebacterium Diphtheriae Toxin,Toxin, Corynebacterium Diphtheriae
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005260 Female Females
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome

Related Publications

T J Moehring, and D E Danley, and J M Moehring
July 1979, Somatic cell genetics,
T J Moehring, and D E Danley, and J M Moehring
July 1983, Molecular and cellular biology,
T J Moehring, and D E Danley, and J M Moehring
August 1977, Proceedings of the National Academy of Sciences of the United States of America,
T J Moehring, and D E Danley, and J M Moehring
January 1978, Journal of supramolecular structure,
T J Moehring, and D E Danley, and J M Moehring
April 1971, Science (New York, N.Y.),
T J Moehring, and D E Danley, and J M Moehring
January 1978, Mutation research,
T J Moehring, and D E Danley, and J M Moehring
January 1987, Journal of cell science. Supplement,
T J Moehring, and D E Danley, and J M Moehring
October 1979, Cell,
T J Moehring, and D E Danley, and J M Moehring
April 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!