Tubular handling of neurotensin in the rat kidney as studied by micropuncture and HPLC. 1989

T Bjerke, and E I Christensen, and N Boye
Department of Cell Biology, University of Aarhus, Denmark.

Micropuncture studies were performed to assess the reabsorption and metabolism of the vasoactive peptide neurotensin (NT) in individual nephron segments and compare it to the handling of the closely related peptide bradykinin (BK). Rat proximal and distal convoluted tubules were microinfused with [3H]NT or [3H]BK. In a second set of experiments, [3H]NT and its metabolites in the ureteral urine were separated and characterized using high-performance liquid chromatography (HPLC) technique. The urinary recovery of 3H-labeled material was 31% when proximal tubules were microinfused with [3H]NT and 94% when distal tubules were infused. For proximal tubules the label recovered in the ureteral urine consisted exclusively of metabolites of NT and appeared as tyrosine, NT1-11, probably NT9-13, and two uncharacterized products. For distal tubules, 9% chromatographed as intact NT in the urine and except for the proportion the metabolites were almost identical to those found when proximal tubules were microinfused. Following microinfusion of [3H]BK into proximal tubules, the urinary recovery of 3H-labeled material was 19%. There was no correlation between fractional reabsorption of 3H-labeled material and proximal tubular length when [3H]NT or [3H]BK was microinfused. In vitro incubation studies with rat ureteral urine showed extensive degradation of NT yielding tyrosine, NT1-6, probably NT9-13, NT, and two uncharacterized products. In contrast, there was no detectable breakdown of BK over a 32-min period. Finally, [3H]NT was incubated in rat serum, and these experiments also showed degradation of the peptide but not to the extent as when incubated in ureteral urine.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D007686 Kidney Tubules, Distal The portion of renal tubule that begins from the enlarged segment of the ascending limb of the LOOP OF HENLE. It reenters the KIDNEY CORTEX and forms the convoluted segments of the distal tubule. Distal Kidney Tubule,Distal Renal Tubule,Distal Kidney Tubules,Distal Renal Tubules,Kidney Tubule, Distal,Renal Tubule, Distal,Renal Tubules, Distal,Tubule, Distal Kidney,Tubule, Distal Renal,Tubules, Distal Kidney,Tubules, Distal Renal
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009496 Neurotensin A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

T Bjerke, and E I Christensen, and N Boye
January 1980, The International journal of biochemistry,
T Bjerke, and E I Christensen, and N Boye
January 1981, Contributions to nephrology,
T Bjerke, and E I Christensen, and N Boye
June 1975, Pflugers Archiv : European journal of physiology,
T Bjerke, and E I Christensen, and N Boye
March 1981, Kidney international,
T Bjerke, and E I Christensen, and N Boye
January 1981, Pflugers Archiv : European journal of physiology,
T Bjerke, and E I Christensen, and N Boye
September 1989, Pflugers Archiv : European journal of physiology,
T Bjerke, and E I Christensen, and N Boye
January 1977, Advances in experimental medicine and biology,
T Bjerke, and E I Christensen, and N Boye
April 1974, Kidney international,
T Bjerke, and E I Christensen, and N Boye
March 1993, Experimental physiology,
T Bjerke, and E I Christensen, and N Boye
January 1969, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!