Formation of bis(monoacylglycero)phosphate by a macrophage transacylase. 1989

S J Huterer, and J R Wherrett
Department of Medicine (Neurology), University of Toronto, Ontario, Canada.

Formation of bis(monoacylglycero)phosphate (BMP) from lysophosphatidyl[U-14C]glycerol was studied in rabbit pulmonary alveolar macrophages. The majority of the activity was found in the particulate fraction (lysosome-enriched) sedimenting between 2000 and 12,000 rpm and it was maximal at pH 4.5. The activity in this fraction was stimulated by 2-mercaptoethanol and additional lipids from the fraction and inhibited by 5 mM CaCl2, 0.5 mM acyl-CoA, 1.0 mM chlorpromazine and by detergents, whereas chloroquine, cholesterol and butanol had no effect. The activity was retained by the particles after repeated freezing and thawing. After treatment with n-butanol, most of the activity was lost, but 84% could be recovered in the aqueous phase if the butanol-extracted lipids were added back giving an activity of 266 nmol/h per mg of protein. Lipids most effective in restoring activity were the total lipids extracted by butanol from the particulate fraction, fractions of the total lipids containing phospholipids and phosphatidylcholine from both native and commercial sources, with native BMP and commercial phosphatidylglycerol and sphingomyelin having a much smaller effect. The complexity of the lipid requirements was further indicated by the finding that addition of pure lipids to the total lipid extract reduced the efficacy of the latter. A direct transfer of [14C]oleic acid to BMP from labelled macrophage microsomal lipids was catalyzed by the soluble enzymes as was transfer from dioleoylphosphatidylcholine in the presence of lysophosphatidylglycerol. The particulate enzyme also catalyzed the transfer of [14C]oleic acid from 2-oleoylphosphatidylcholine to BMP in the presence of lysophosphatidylglycerol. These findings indicate that the transacylase involved in conversion of lysophosphatidylglycerol to BMP utilizes complex lipids other than phosphatidylinositol as acyl donors and has complex requirements for lipids as physicochemical activators. They further suggest that the transacylation might be catalyzed by lysosomal phospholipase A2.

UI MeSH Term Description Entries
D008246 Lysophospholipids Derivatives of PHOSPHATIDIC ACIDS that lack one of its fatty acyl chains due to its hydrolytic removal. Lysophosphatidic Acids,Lysophospholipid,Acids, Lysophosphatidic
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

S J Huterer, and J R Wherrett
November 1996, Biochemistry,
S J Huterer, and J R Wherrett
September 2015, Lipids,
S J Huterer, and J R Wherrett
March 1999, Biochimica et biophysica acta,
S J Huterer, and J R Wherrett
December 1990, The Journal of biological chemistry,
S J Huterer, and J R Wherrett
November 1982, Journal of biochemistry,
S J Huterer, and J R Wherrett
April 2008, The Biochemical journal,
S J Huterer, and J R Wherrett
August 2006, Biochemistry,
S J Huterer, and J R Wherrett
May 2015, Journal of lipid research,
S J Huterer, and J R Wherrett
June 1976, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Copied contents to your clipboard!