Sensory percepts induced by microwire array and DBS microstimulation in human sensory thalamus. 2018

Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
Department of Biomedical Engineering, Duke University, Durham, NC 27710, United States.

Microstimulation in human sensory thalamus (ventrocaudal, VC) results in focal sensory percepts in the hand and arm which may provide an alternative target site (to somatosensory cortex) for the input of prosthetic sensory information. Sensory feedback to facilitate motor function may require simultaneous or timed responses across separate digits to recreate perceptions of slip as well as encoding of intensity variations in pressure or touch. To determine the feasibility of evoking sensory percepts on separate digits with variable intensity through either a microwire array or deep brain stimulation (DBS) electrode, recreating "natural" and scalable percepts relating to the arm and hand. We compared microstimulation within ventrocaudal sensory thalamus through either a 16-channel microwire array (∼400 kΩ per channel) or a 4-channel DBS electrode (∼1.2 kΩ per contact) for percept location, size, intensity, and quality sensation, during thalamic DBS electrode placement in patients with essential tremor. Percepts in small hand or finger regions were evoked by microstimulation through individual microwires and in 5/6 patients sensation on different digits could be perceived from stimulation through separate microwires. Microstimulation through DBS electrode contacts evoked sensations over larger areas in 5/5 patients, and the apparent intensity of the perceived response could be modulated with stimulation amplitude. The perceived naturalness of the sensation depended both on the pattern of stimulation as well as intensity of the stimulation. Producing consistent evoked perceptions across separate digits within sensory thalamus is a feasible concept and a compact alternative to somatosensory cortex microstimulation for prosthetic sensory feedback. This approach will require a multi-element low impedance electrode with a sufficient stimulation range to evoke variable intensities of perception and a predictable spread of contacts to engage separate digits.

UI MeSH Term Description Entries
D008297 Male Males
D004567 Electrodes, Implanted Surgically placed electric conductors through which ELECTRIC STIMULATION is delivered to or electrical activity is recorded from a specific point inside the body. Implantable Electrodes,Implantable Stimulation Electrodes,Implanted Electrodes,Implanted Stimulation Electrodes,Electrode, Implantable,Electrode, Implantable Stimulation,Electrode, Implanted,Electrode, Implanted Stimulation,Electrodes, Implantable,Electrodes, Implantable Stimulation,Electrodes, Implanted Stimulation,Implantable Electrode,Implantable Stimulation Electrode,Implanted Electrode,Implanted Stimulation Electrode,Stimulation Electrode, Implantable,Stimulation Electrode, Implanted,Stimulation Electrodes, Implantable,Stimulation Electrodes, Implanted
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons
D014110 Touch Sensation of making physical contact with objects, animate or inanimate. Tactile stimuli are detected by MECHANORECEPTORS in the skin and mucous membranes. Tactile Sense,Sense of Touch,Taction,Sense, Tactile,Senses, Tactile,Tactile Senses,Tactions,Touch Sense,Touch Senses
D046690 Deep Brain Stimulation Therapy for MOVEMENT DISORDERS, especially PARKINSON DISEASE, that applies electricity via stereotactic implantation of ELECTRODES in specific areas of the BRAIN such as the THALAMUS. The electrodes are attached to a neurostimulator placed subcutaneously. Brain Stimulation, Deep,Electrical Stimulation of the Brain,Brain Stimulations, Deep,Deep Brain Stimulations,Stimulation, Deep Brain,Stimulations, Deep Brain
D055698 Touch Perception The process by which the nature and meaning of tactile stimuli are recognized and interpreted by the brain, such as realizing the characteristics or name of an object being touched. Tactile Perception,Perception, Tactile,Perception, Touch,Perceptions, Tactile,Perceptions, Touch,Tactile Perceptions,Touch Perceptions
D025461 Feedback, Physiological A mechanism of communication with a physiological system for homeostasis, adaptation, etc. Physiological feedback is mediated through extensive feedback mechanisms that use physiological cues as feedback loop signals to control other systems. Feedback, Biochemical,Feedback Inhibition, Biochemical,Feedback Regulation, Biochemical,Feedback Stimulation, Biochemical,Negative Feedback, Biochemical,Positive Feedback, Biochemical,Biochemical Feedback,Biochemical Feedback Inhibition,Biochemical Feedback Inhibitions,Biochemical Feedback Regulation,Biochemical Feedback Regulations,Biochemical Feedback Stimulation,Biochemical Feedback Stimulations,Biochemical Feedbacks,Biochemical Negative Feedback,Biochemical Negative Feedbacks,Biochemical Positive Feedback,Biochemical Positive Feedbacks,Feedback Inhibitions, Biochemical,Feedback Regulations, Biochemical,Feedback Stimulations, Biochemical,Feedback, Biochemical Negative,Feedback, Biochemical Positive,Feedbacks, Biochemical,Feedbacks, Biochemical Negative,Feedbacks, Biochemical Positive,Feedbacks, Physiological,Inhibition, Biochemical Feedback,Inhibitions, Biochemical Feedback,Negative Feedbacks, Biochemical,Physiological Feedback,Physiological Feedbacks,Positive Feedbacks, Biochemical,Regulation, Biochemical Feedback,Regulations, Biochemical Feedback,Stimulation, Biochemical Feedback,Stimulations, Biochemical Feedback

Related Publications

Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
October 2003, Journal of neurophysiology,
Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
January 1999, Brain research bulletin,
Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
January 1976, Applied neurophysiology,
Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
January 1989, Stereotactic and functional neurosurgery,
Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
March 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society,
Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
August 2003, The European journal of neuroscience,
Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
May 1993, Chinese medical journal,
Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
May 2025, Journal of neural engineering,
Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
March 1984, Experimental neurology,
Brandon D Swan, and Lynne B Gasperson, and Max O Krucoff, and Warren M Grill, and Dennis A Turner
January 2011, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Copied contents to your clipboard!