Loss of the mucosal barrier alters the progenitor cell niche via Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. 2017

Liping Zhang, and Bradley Turner, and Katharina Ribbeck, and Kelly G Ten Hagen
From the Developmental Glycobiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370 and.

The mucous barrier of our digestive tract is the first line of defense against pathogens and damage. Disruptions in this barrier are associated with diseases such as Crohn's disease, colitis, and colon cancer, but mechanistic insights into these processes and diseases are limited. We have previously shown that loss of a conserved O-glycosyltransferase (PGANT4) in Drosophila results in aberrant secretion of components of the peritrophic/mucous membrane in the larval digestive tract. Here, we show that loss of PGANT4 disrupts the mucosal barrier, resulting in epithelial expression of the IL-6-like cytokine Upd3, leading to activation of JAK/STAT signaling, differentiation of cells that form the progenitor cell niche, and abnormal proliferation of progenitor cells. This niche disruption could be recapitulated by overexpressing upd3 and rescued by deleting upd3, highlighting a crucial role for this cytokine. Moreover, niche integrity and cell proliferation in pgant4-deficient animals could be rescued by overexpression of the conserved cargo receptor Tango1 and partially rescued by supplementation with exogenous mucins or treatment with antibiotics. Our findings help elucidate the paracrine signaling events activated by a compromised mucosal barrier and provide a novel in vivo screening platform for mucin mimetics and other strategies to treat diseases of the oral mucosa and digestive tract.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D017350 N-Acetylgalactosaminyltransferases Enzymes that catalyze the transfer of N-acetylgalactosamine from a nucleoside diphosphate N-acetylgalactosamine to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. N-Acetylgalactosamine Transferases,N Acetylgalactosamine Transferases,N Acetylgalactosaminyltransferases,Transferases, N-Acetylgalactosamine
D050791 STAT Transcription Factors A family of transcription factors containing SH2 DOMAINS that are involved in CYTOKINE-mediated SIGNAL TRANSDUCTION. STAT transcription factors are recruited to the cytoplasmic region of CELL SURFACE RECEPTORS and are activated via PHOSPHORYLATION. Once activated they dimerize and translocate into the CELL NUCLEUS where they influence GENE expression. They play a role in regulating CELL GROWTH PROCESSES and CELL DIFFERENTIATION. STAT transcription factors are inhibited by SUPPRESSOR OF CYTOKINE SIGNALING PROTEINS and PROTEIN INHIBITORS OF ACTIVATED STAT. STAT (Signal Transducers and Activators of Transcription) Proteins,Transcription Factors, STAT
D053612 Janus Kinases A family of intracellular tyrosine kinases that participate in the signaling cascade of cytokines by associating with specific CYTOKINE RECEPTORS. They act upon STAT TRANSCRIPTION FACTORS in signaling pathway referred to as the JAK/STAT pathway. The name Janus kinase refers to the fact the proteins have two phosphate-transferring domains. Janus Kinase,JAK Kinases,Kinase, Janus,Kinases, JAK,Kinases, Janus

Related Publications

Liping Zhang, and Bradley Turner, and Katharina Ribbeck, and Kelly G Ten Hagen
May 2000, Molecular endocrinology (Baltimore, Md.),
Liping Zhang, and Bradley Turner, and Katharina Ribbeck, and Kelly G Ten Hagen
December 2021, BMC research notes,
Liping Zhang, and Bradley Turner, and Katharina Ribbeck, and Kelly G Ten Hagen
January 2009, BioFactors (Oxford, England),
Liping Zhang, and Bradley Turner, and Katharina Ribbeck, and Kelly G Ten Hagen
July 2024, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Liping Zhang, and Bradley Turner, and Katharina Ribbeck, and Kelly G Ten Hagen
December 2013, Clinical and experimental immunology,
Liping Zhang, and Bradley Turner, and Katharina Ribbeck, and Kelly G Ten Hagen
January 2021, Clinics (Sao Paulo, Brazil),
Liping Zhang, and Bradley Turner, and Katharina Ribbeck, and Kelly G Ten Hagen
October 2022, Cryobiology,
Liping Zhang, and Bradley Turner, and Katharina Ribbeck, and Kelly G Ten Hagen
February 2023, Chemico-biological interactions,
Copied contents to your clipboard!