Compatible limb patterning mechanisms in urodeles and anurans. 1989

S K Sessions, and D M Gardiner, and S V Bryant
Developmental Biology Center, University of California, Irvine 92717.

We have experimentally tested the similarity of limb pattern-forming mechanisms in urodeles and anurans. To determine whether the mechanisms of limb outgrowth are equivalent, we compared the results of two kinds of reciprocal limb bud grafts between Xenopus and axolotls: contralateral grafts to confront anterior and posterior positions of graft and host, and ipsilateral grafts to align equivalent circumferential positions. Axolotl limb buds grafted to Xenopus hosts are immunologically rejected at a relatively early stage. Prior to rejection, however, experimental (but not control) grafts form supernumerary digits. Xenopus limb buds grafted to axolotl hosts are not rejected within the time frame of the experiment and therefore can be used to test the ability of frog cells to elicit responses from axolotl tissue that are similar to those that are elicited by axolotl tissue itself. When Xenopus buds were grafted to axolotl limb stumps so as to align circumferential positions, the majority of limbs did not form any supernumerary digits. However, in experimental grafts, where anterior and posterior of host and graft were misaligned, supernumerary digits formed at positional discontinuities. These results suggest that Xenopus/axolotl cell interactions result in responses that are similar to axolotl/axolotl cell interactions. Furthermore, axolotl and Xenopus cells can cooperate to build recognizable skeletal elements, despite large differences in cell size and growth rate between the two species. We infer from these results that urodeles and anurans share the same limb pattern-forming mechanisms, including compatible positional signals that allow appropriate localized cellular interactions between the two species. Our results suggest an approach for understanding homology of the tetrapod limb based on experimental cellular interactions.

UI MeSH Term Description Entries
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005121 Extremities The farthest or outermost projections of the body, such as the HAND and FOOT. Limbs,Extremity,Limb
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000558 Ambystoma mexicanum A salamander found in Mexican mountain lakes and accounting for about 30 percent of the urodeles used in research. The axolotl remains in larval form throughout its life, a phenomenon known as neoteny. Axolotl,Mexican Salamander,Ambystoma mexicanums,Axolotls,Salamander, Mexican,mexicanums, Ambystoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

S K Sessions, and D M Gardiner, and S V Bryant
January 1992, In vivo (Athens, Greece),
S K Sessions, and D M Gardiner, and S V Bryant
September 1986, Journal of morphology,
S K Sessions, and D M Gardiner, and S V Bryant
December 1999, Development, growth & differentiation,
S K Sessions, and D M Gardiner, and S V Bryant
August 1994, Current opinion in genetics & development,
S K Sessions, and D M Gardiner, and S V Bryant
January 2001, Annual review of cell and developmental biology,
S K Sessions, and D M Gardiner, and S V Bryant
June 1995, Journal of molecular biology,
S K Sessions, and D M Gardiner, and S V Bryant
August 1983, Developmental biology,
S K Sessions, and D M Gardiner, and S V Bryant
August 1996, The International journal of developmental biology,
S K Sessions, and D M Gardiner, and S V Bryant
August 1996, The International journal of developmental biology,
Copied contents to your clipboard!