Intrinsic connections of rat primary visual cortex: laminar organization of axonal projections. 1989

A Burkhalter
Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri 63110.

The organization of local projections within the rat primary visual cortex (area 17) was investigated by tracing fibers with HRP in in vitro brain slices. The projections from different layers showed distinct laminar patterns. Layer 4 made a strong, topographically precise, projection to lower layer 2/3; weaker projections extended laterally and terminated diffusely in layer 2/3 but also ran vertically to layers 5 and 6. The connections of lower and upper layer 2/3 were reciprocal and point-to-point. Within layer 2/3, a large number of fibers ran horizontally and terminated at variable distances from the injection site without making terminal clusters. The main output from layer 2/3 was to layer 5. The most prominent projections from the upper half of layer 5 were to layers 2/3 and 6; lower layer 5, in contrast, made wide-ranging, clustered projections to layer 1, the bottom of layer 2/3, and the top of layers 4 and 5. The patches were 130-160 micron wide and spaced apart by 230-260 micron. The main projection that arose from the superficial layer 6 terminated in layer 4 above the injection site. In contrast, lower layer 6 made clustered projections to the layer 3/4 border, extending up to 2 mm in the coronal plane. The patches were 190-220 micron wide and spaced apart by 320-390 micron. Additional projections went to the layer 5/6 border and layers 1 and 2. These results indicate that geniculocortical input is processed through interlaminar connections that are topographically precise, widespread, or patchy. These connectivity patterns suggest a role for these connections in the transformation of functional maps between layers; focused projections preserve the architecture of the layers of origin, and diverging or patchy projections rearrange this organization and form new maps in the target layers (Lund: Annu. Rev. Neurosci. 11:253-288, '88). However, only a few interlaminar connections show one of these patterns in isolation, making it difficult to assign a single function to a particular connection. We, therefore, tentatively conclude that projections terminating in layers 1-4, with the possible exception of the connection between upper layer 6 and layer 4, transform functional maps. In contrast, the topographically precise projections from upper to lower layers preserve functional maps. The specific role of these connections in the construction of receptive field properties, however, is not known.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D005260 Female Females
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A Burkhalter
May 1983, The Journal of comparative neurology,
A Burkhalter
December 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Burkhalter
February 1985, Proceedings of the National Academy of Sciences of the United States of America,
A Burkhalter
August 1998, The Journal of comparative neurology,
A Burkhalter
November 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Burkhalter
March 1977, Experimental brain research,
A Burkhalter
September 1990, The Journal of comparative neurology,
A Burkhalter
December 2009, Anatomical science international,
Copied contents to your clipboard!