Synthesis, cytotoxicity, and antiviral activity of some acyclic analogues of the pyrrolo[2,3-d]pyrimidine nucleoside antibiotics tubercidin, toyocamycin, and sangivamycin. 1989

P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109-1065.

A number of 7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3d-d]pyrimidine derivatives that are structurally related to toyocamycin and sangivamycin and the seco nucleosides of tubercidin, toyocamycin, and sangivamycin were prepared and tested for their biological activity. Treatment of the sodium salt of 4-amino-6-bromo-5-cyanopyrrolo[2,3-d]-pyrimidine with 1,3-bis(benzyloxy)-2-propoxymethyl chloride afforded compound 3, which without isolation was debrominated to obtain 4-amino-5-cyano-7-[[1,3-bis(benzyloxy)-2- propoxy]methyl]pyrrolo[2,3-d]pyrimidine. Although catalytic hydrogenolysis failed, the benzyl ether functionalities of 4 were successfully cleaved by boron trichloride to afford 4-amino-5-cyano-7-[(1,3-dihydroxy-2- propoxy)methyl]pyrrolo[2,3-d]pyrimidine. Conventional functional group transformation of the cyano group of 6 provided a number of novel 5-substituted derivatives. Tubercidin (8a), toyocamycin (8b), and sangivamycin (8c) were treated separately with sodium metaperiodate and then with sodium borohydride to afford the 2',3'-seco derivatives 9a-c, respectively. The acyclic nucleoside 4-chloro-2-(methylthio)-7-[[1,3-bis(benzyloxy)-2- propoxy]methyl]pyrrolo[2,3-d]pyrimidine was aminated, desulfurized with Raney Ni, and then debenzylated to provide the tubercidin analogue 11. Cytotoxicity evaluation against L1210 murine leukemic cells in vitro showed that although the parent compounds tubercidin (8a), toyocamycin (8b), and sangivamycin (8c) were very potent growth inhibitors, the acyclic derivatives 6, 7a-c, and 9a-c had only slight growth-inhibitory activity. Evaluation of compounds 6, 7a, 7b, 7c, 9a, 9b, 9c, 11 for cytoxicity and activity against human cytomegalovirus (HCMV) and herpes simplex virus type 1 (HSV-1) revealed that only the carboxamide (7a) and the thioamide (7c) were active. Compound 7c was the more potent of the two, inhibiting HCMV but not HSV-1 at concentrations producing little cytotoxicity.

UI MeSH Term Description Entries
D011741 Pyrimidine Nucleosides Pyrimidines with a RIBOSE attached that can be phosphorylated to PYRIMIDINE NUCLEOTIDES. Nucleosides, Pyrimidine
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000617 Aminoglycosides Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS. Aminoglycoside
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014127 Toyocamycin 4-Amino-5-cyano-7-(D-ribofuranosyl)-7H- pyrrolo(2,3-d)pyrimidine. Antibiotic antimetabolite isolated from Streptomyces toyocaensis cultures. It is an analog of adenosine, blocks RNA synthesis and ribosome function, and is used mainly as a tool in biochemistry. Deazacyanoadenosine,Toyokamycin

Related Publications

P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
August 1990, Journal of medicinal chemistry,
P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
July 1989, Journal of medicinal chemistry,
P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
January 1968, Journal of the American Chemical Society,
P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
July 1990, Journal of medicinal chemistry,
P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
March 1976, Biochemistry,
P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
August 1996, Journal of medicinal chemistry,
P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
March 1987, Journal of medicinal chemistry,
P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
March 2001, Carbohydrate research,
P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
January 1989, Yao xue xue bao = Acta pharmaceutica Sinica,
P K Gupta, and S Daunert, and M R Nassiri, and L L Wotring, and J C Drach, and L B Townsend
July 2005, Journal of medicinal chemistry,
Copied contents to your clipboard!