Structure and electrical properties of DNA nanotubes embedded in lipid bilayer membranes. 2018

Himanshu Joshi, and Prabal K Maiti
Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.

Engineering the synthetic nanopores through lipid bilayer membrane to access the interior of a cell is a long persisting challenge in biotechnology. Here, we demonstrate the stability and dynamics of a tile-based 6-helix DNA nanotube (DNT) embedded in POPC lipid bilayer using the analysis of 0.2 μs long equilibrium MD simulation trajectories. We observe that the head groups of the lipid molecules close to the lumen cooperatively tilt towards the hydrophilic sugar-phosphate backbone of DNA and form a toroidal structure around the patch of DNT protruding in the membrane. Further, we explore the effect of ionic concentrations to the in-solution structure and stability of the lipid-DNT complex. Transmembrane ionic current measurements for the constant electric field MD simulation provide the I-V characteristics of the water filled DNT lumen in lipid membrane. With increasing salt concentrations, the measured values of transmembrane ionic conductance of the porous DNT lumen vary from 4.3 to 20.6 nS. Simulations of the DNTs with ssDNA and dsDNA overhangs at the mouth of the pore show gating effect with remarkable difference in the transmembrane ionic conductivities for open and close state nanopores.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D043942 Nanotubes Nanometer-sized tubes composed of various substances including carbon (CARBON NANOTUBES), boron nitride, or nickel vanadate. Nanorods,Nanorod,Nanotube
D055590 Electromagnetic Phenomena Characteristics of ELECTRICITY and magnetism such as charged particles and the properties and behavior of charged particles, and other phenomena related to or associated with electromagnetism. Electrical Concepts,Electromagnetic Concepts,Electrical Phenomena,Electrical Phenomenon,Electromagnetic Phenomenon,Electromagnetics,Concept, Electrical,Concept, Electromagnetic,Concepts, Electrical,Concepts, Electromagnetic,Electrical Concept,Electromagnetic Concept,Electromagnetic Phenomenas,Phenomena, Electrical,Phenomena, Electromagnetic,Phenomenon, Electrical,Phenomenon, Electromagnetic
D056004 Molecular Dynamics Simulation A computer simulation developed to study the motion of molecules over a period of time. Molecular Dynamics Simulations,Molecular Dynamics,Dynamic, Molecular,Dynamics Simulation, Molecular,Dynamics Simulations, Molecular,Dynamics, Molecular,Molecular Dynamic,Simulation, Molecular Dynamics,Simulations, Molecular Dynamics

Related Publications

Himanshu Joshi, and Prabal K Maiti
January 1978, Doklady Akademii nauk SSSR,
Himanshu Joshi, and Prabal K Maiti
July 2013, Langmuir : the ACS journal of surfaces and colloids,
Himanshu Joshi, and Prabal K Maiti
December 1977, Annals of the New York Academy of Sciences,
Himanshu Joshi, and Prabal K Maiti
September 1970, Biochimica et biophysica acta,
Himanshu Joshi, and Prabal K Maiti
February 1970, Journal of theoretical biology,
Himanshu Joshi, and Prabal K Maiti
April 1976, Biophysical journal,
Himanshu Joshi, and Prabal K Maiti
January 1977, Physiological chemistry and physics,
Himanshu Joshi, and Prabal K Maiti
August 1979, Biochimica et biophysica acta,
Himanshu Joshi, and Prabal K Maiti
November 2003, Bulletin of experimental biology and medicine,
Himanshu Joshi, and Prabal K Maiti
August 2016, Soft matter,
Copied contents to your clipboard!