Identification of Plasma Membrane Glycoproteins Specific to Human Glioblastoma Multiforme Cells Using Lectin Arrays and LC-MS/MS. 2018

Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.

Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant type of brain cancer and has poor prognosis with a median survival of less than one year. While the structural changes of tumor cell surface carbohydrates are known to be associated with invasive behavior of tumor cells, the cell surface glycoproteins to differentiate the low- and high-grade glioma cells can be potential diagnostic markers and therapeutic targets for GBMs. In the present study, lectin arrays consisting of eight lectins were employed to explore cell surface carbohydrate expression patterns on low-grade oligodendroglioma cells (Hs683) and GBM cells (T98G). Griffonia simplicifolia I (GS I) was found to selectively bind to T98G cells and not to Hs683 cells. For identification of the glioblastoma-specific cell surface markers, the glycoproteins from each cell type were captured by a GS I lectin column and analyzed by LC-MS/MS. The identified proteins from the two cell types were quantified using label-free quantitative analysis based on spectral counting. Of cell surface glycoproteins showing significant increases in T98G cells, five proteins were selected for verification of both protein and glycosylation level changes using Western blot and GS I lectin-based immunosorbent assay.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014408 Biomarkers, Tumor Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or BODY FLUIDS. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including HORMONES; ANTIGENS; amino and NUCLEIC ACIDS; ENZYMES; POLYAMINES; and specific CELL MEMBRANE PROTEINS and LIPIDS. Biochemical Tumor Marker,Cancer Biomarker,Carcinogen Markers,Markers, Tumor,Metabolite Markers, Neoplasm,Tumor Biomarker,Tumor Marker,Tumor Markers, Biochemical,Tumor Markers, Biological,Biochemical Tumor Markers,Biological Tumor Marker,Biological Tumor Markers,Biomarkers, Cancer,Marker, Biochemical Tumor,Marker, Biologic Tumor,Marker, Biological Tumor,Marker, Neoplasm Metabolite,Marker, Tumor Metabolite,Markers, Biochemical Tumor,Markers, Biological Tumor,Markers, Neoplasm Metabolite,Markers, Tumor Metabolite,Metabolite Markers, Tumor,Neoplasm Metabolite Markers,Tumor Markers, Biologic,Tumor Metabolite Marker,Biologic Tumor Marker,Biologic Tumor Markers,Biomarker, Cancer,Biomarker, Tumor,Cancer Biomarkers,Marker, Tumor,Markers, Biologic Tumor,Markers, Carcinogen,Metabolite Marker, Neoplasm,Metabolite Marker, Tumor,Neoplasm Metabolite Marker,Tumor Biomarkers,Tumor Marker, Biochemical,Tumor Marker, Biologic,Tumor Marker, Biological,Tumor Markers,Tumor Metabolite Markers
D053719 Tandem Mass Spectrometry A mass spectrometry technique using two (MS/MS) or more mass analyzers. With two in tandem, the precursor ions are mass-selected by a first mass analyzer, and focused into a collision region where they are then fragmented into product ions which are then characterized by a second mass analyzer. A variety of techniques are used to separate the compounds, ionize them, and introduce them to the first mass analyzer. For example, for in GC-MS/MS, GAS CHROMATOGRAPHY-MASS SPECTROMETRY is involved in separating relatively small compounds by GAS CHROMATOGRAPHY prior to injecting them into an ionization chamber for the mass selection. Mass Spectrometry-Mass Spectrometry,Mass Spectrometry Mass Spectrometry,Mass Spectrometry, Tandem

Related Publications

Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
November 2008, Analytical chemistry,
Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
March 2016, Analytical biochemistry,
Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
May 2010, Journal of proteome research,
Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
February 1977, Biochemistry,
Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
June 1995, Journal of chromatography. B, Biomedical applications,
Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
January 2008, Proteomics,
Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
July 2010, Proteomics. Clinical applications,
Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
September 2012, Journal of proteome research,
Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
March 2014, Journal of separation science,
Yae Eun Park, and Jeonghun Yeom, and YoungSoo Kim, and Hye Jin Lee, and Ki-Cheol Han, and Seung-Taek Lee, and Cheolju Lee, and Ji Eun Lee
June 2003, Journal of pharmaceutical and biomedical analysis,
Copied contents to your clipboard!