Chemotaxis mutants of Spirochaeta aurantia. 1989

K Fosnaugh, and E P Greenberg
Department of Microbiology, New York State College of Agriculture and Life Sciences, Cornell University, Ithaca 14853-7201.

Five Spirochaeta aurantia chemotaxis mutants were isolated. One mutant (the che-101 mutant) never reversed, one (the che-200 mutant) flexed predominantly, two (the che-300 and che-400-1 mutants) exhibited elevated reversal frequencies, and one (the che-400 mutant) exhibited chemotactically unstimulated behavior similar to that of the wild-type strain. The che-101 and che-400 mutants were essentially nonchemotactic, whereas the che-200, che-300, and che-400-1 mutants showed impaired chemotactic responses. Protein methylation in response to attractant addition appeared normal in all of the mutants. Compared with the wild type, all of the mutants exhibited significantly altered membrane potential responses to the attractant xylose.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013142 Spirochaeta A genus of flexible, spiral rods found in hydrogen sulfide-containing mud, sewage, and polluted water. None of the species properly referred to in this genus are pathogenic.
D014994 Xylose D-Xylose,D Xylose

Related Publications

K Fosnaugh, and E P Greenberg
April 1977, Journal of bacteriology,
K Fosnaugh, and E P Greenberg
September 1983, Journal of bacteriology,
K Fosnaugh, and E P Greenberg
February 1983, Journal of bacteriology,
K Fosnaugh, and E P Greenberg
July 1984, Journal of bacteriology,
K Fosnaugh, and E P Greenberg
January 1969, Journal of bacteriology,
K Fosnaugh, and E P Greenberg
April 2000, Journal of bacteriology,
K Fosnaugh, and E P Greenberg
December 2009, Glycoconjugate journal,
K Fosnaugh, and E P Greenberg
February 1993, FEMS microbiology letters,
K Fosnaugh, and E P Greenberg
October 1983, Journal of bacteriology,
Copied contents to your clipboard!