5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. 1989

L A Chodosh, and A Fire, and M Samuels, and P A Sharp
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.

The purine nucleoside analog 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) is a selective inhibitor of transcription by RNA polymerase II. Although a wealth of in vivo studies have suggested that DRB inhibits transcription by enhancing the premature termination of elongating polymerase molecules, in vitro studies to date have been interpreted to suggest that DRB acts at the level of transcription initiation. We have analyzed the mechanism of DRB-mediated transcription inhibition in vitro both in HeLa whole cell extracts and in a partially purified transcription system. The results indicate that the extent to which DRB inhibits the synthesis of a RNA transcript is directly proportional to its length. For example, DRB was found to preferentially inhibit transcription in vitro of promoter-distal relative to promoter-proximal portions of the adenovirus major late transcription unit. A factor potentially involved in mediating this inhibitory effect is identified. We conclude that the mechanism of DRB inhibition of transcription in vivo and in vitro are similar.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004004 Dichlororibofuranosylbenzimidazole An RNA polymerase II transcriptional inhibitor. This compound terminates transcription prematurely by selective inhibition of RNA synthesis. It is used in research to study underlying mechanisms of cellular regulation. Dichlorobenzimidazole Riboside,5,6-Dichloro-1-beta-D-ribofuranosyl-1-H-benzimidazol,5,6-Dichloro-1-beta-ribofuranosylbenzimidazole,DRB,5,6 Dichloro 1 beta D ribofuranosyl 1 H benzimidazol,5,6 Dichloro 1 beta ribofuranosylbenzimidazole,Riboside, Dichlorobenzimidazole
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012263 Ribonucleosides Nucleosides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed)
D012265 Ribonucleotides Nucleotides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed) Ribonucleoside Phosphates,Ribonucleotide,Phosphates, Ribonucleoside
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

L A Chodosh, and A Fire, and M Samuels, and P A Sharp
October 1995, The Journal of biological chemistry,
L A Chodosh, and A Fire, and M Samuels, and P A Sharp
March 1986, The Journal of biological chemistry,
L A Chodosh, and A Fire, and M Samuels, and P A Sharp
March 1989, Biochemical and biophysical research communications,
L A Chodosh, and A Fire, and M Samuels, and P A Sharp
October 1987, The Journal of biological chemistry,
L A Chodosh, and A Fire, and M Samuels, and P A Sharp
October 1976, Science (New York, N.Y.),
L A Chodosh, and A Fire, and M Samuels, and P A Sharp
October 1975, Science (New York, N.Y.),
L A Chodosh, and A Fire, and M Samuels, and P A Sharp
May 1978, Virology,
L A Chodosh, and A Fire, and M Samuels, and P A Sharp
September 1989, The Biochemical journal,
L A Chodosh, and A Fire, and M Samuels, and P A Sharp
November 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!