Control of lipoprotein lipase secretion in mouse macrophages. 1989

R Goldman, and O Sopher
Department of Membrane Research, Weizmann Institute of Science, Rehovot, Israel.

The regulation of secretion of lipoprotein lipase (LPL) was studied in in vitro-derived mouse bone marrow macrophages (BMM), peritoneal exudate and resident macrophages and in the macrophage-like tumor cell line J774.1. BMM in cultures initiated with low concentrations of bone marrow cells (LC-BMC cultures) secrete more LPL per cell than BMM in cultures initiated with high concentrations of bone marrow cells (HC-BMC cultures). The suppressed state of LPL secretion in HC-BMC cultures could be alleviated by the addition of a colony-stimulating factor source (L-cell-conditioned medium; L-CM) onto the culture medium or exchanging the medium of HC-BMC cultures with medium from LC-BMC cultures for short periods (4 h). Addition of L-CM increased LPL secretion also in LC-BMC cultures. Addition of L-CM to fresh culture medium had little or no effect, suggesting that, in addition to requirement for L-CM, optimal expression depended also on factors released by the growing cells, probably providing optimal growth conditions. L-CM enhanced LPL secretion by thioglycollate-elicited peritoneal macrophages and had no effect on LPL secretion by resident peritoneal macrophages. Secretion of LPL from adherent J774.1 cells showed a biphasic effect. Secretion increased with cell density up to the point when growth inhibition was observed. In dense cultures in which cell proliferation was almost arrested, LPL secretion was remarkably suppressed (80-90%). Change of medium of dense cultures to fresh medium or medium conditioned by sparse cultures (for the last 4 h of culture) led to enhancement of LPL secretion to levels similar to those optimally expressed by sparse cultures. L-CM did not enhance LPL secretion from J774.1 cells. Dense cultures of both BMM and J774.1 cells did not contain a stable inhibitor of LPL secretion and medium from sparse cultures did not contain an inducer of LPL secretion. The data suggest that proliferating macrophages secrete large amounts of LPL, whereas in nonproliferating, quiescent cells, this activity is much reduced. L-CM enhances LPL secretion in quiescent BMM and peritoneal exudate cells to levels expressed by proliferating cells. Since this effect is already expressed after a 4 h incubation period, it is not dependent on cell cycling but could be one of the early responses to this macrophage mitogen. In J774.1 cells, a change of medium is a sufficient signal for enhancement of LPL secretion in quiescent cells.

UI MeSH Term Description Entries
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010537 Peritoneum A membrane of squamous EPITHELIAL CELLS, the mesothelial cells, covered by apical MICROVILLI that allow rapid absorption of fluid and particles in the PERITONEAL CAVITY. The peritoneum is divided into parietal and visceral components. The parietal peritoneum covers the inside of the ABDOMINAL WALL. The visceral peritoneum covers the intraperitoneal organs. The double-layered peritoneum forms the MESENTERY that suspends these organs from the abdominal wall. Parietal Peritoneum,Peritoneum, Parietal,Peritoneum, Visceral,Visceral Peritoneum,Parametrium,Parametriums
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005122 Exudates and Transudates Exudates are fluids, CELLS, or other cellular substances that are slowly discharged from BLOOD VESSELS usually from inflamed tissues. Transudates are fluids that pass through a membrane or squeeze through tissue or into the EXTRACELLULAR SPACE of TISSUES. Transudates are thin and watery and contain few cells or PROTEINS. Transudates,Exudates,Transudates and Exudates,Exudate,Transudate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

R Goldman, and O Sopher
January 1987, Biochemical and biophysical research communications,
R Goldman, and O Sopher
December 1986, Biochimica et biophysica acta,
R Goldman, and O Sopher
July 1981, The Journal of biological chemistry,
R Goldman, and O Sopher
January 1990, Journal of leukocyte biology,
R Goldman, and O Sopher
February 1982, The Journal of clinical investigation,
R Goldman, and O Sopher
May 1997, The Journal of biological chemistry,
R Goldman, and O Sopher
January 1985, Scandinavian journal of gastroenterology. Supplement,
R Goldman, and O Sopher
March 1982, Proceedings of the National Academy of Sciences of the United States of America,
R Goldman, and O Sopher
October 1986, The Journal of experimental medicine,
Copied contents to your clipboard!