Acoustophoretic separation of infected erythrocytes from blood plasma in a microfluidic platform using biofunctionalized, matched-impedance layers. 2018

Tamaghna Gupta, and Ritwick Ghosh, and Ranjan Ganguly
NTPC Limited, Farakka, Murshidabad, 742236, India.

Acoustophoresis is rapidly gaining prominence in the field of cell manipulation. In recent years, researchers have extensively used this method for separating different types of cells from the bulk fluid. In this paper, we propose a novel acoustophoresis-based technique to capture infected or abnormal erythrocytes from blood plasma. A typical acoustic device consisting of a transducer assembly, microfluidic cavity, and a reflector is considered. Based on the concept of impedance matching, a pair of antibody-coated polystyrene layers is placed in the nodal regions of an acoustic field within the cavity. This technique allows bi-directional migration of the suspended cells to the biofunctionalized surfaces. Therefore, simultaneous capture of infected erythrocytes on both the layers is feasible. Finite element method is used to model the pressure field as well as the motion of erythrocytes under the influence of acoustic radiation, drag, and gravitational forces. A parametric analysis is done by varying the excitation frequency, driving voltage, and the thickness of the polystyrene layers. The resulting changes in the pressure amplitude and field pattern are investigated. The erythrocyte collection efficiency, rate of collection, and the cell distribution on the layer surfaces are also determined under different field conditions. The occurrence of transient cavitation in the blood plasma-filled cavity at the chosen frequency is taken into account by using its threshold pressure value as the limiting factor of pressure amplitude. The study provides an insight into the phenomenon and serves as a guideline to fabricate low-cost, multifunctional rapid diagnostic devices based on acoustophoretic separation.

UI MeSH Term Description Entries
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000162 Acoustics The branch of physics that deals with sound and sound waves. In medicine it is often applied in procedures in speech and hearing studies. With regard to the environment, it refers to the characteristics of a room, auditorium, theatre, building, etc. that determines the audibility or fidelity of sounds in it. (From Random House Unabridged Dictionary, 2d ed) Acoustic
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D017097 Electric Impedance The resistance to the flow of either alternating or direct electrical current. Bioelectrical Impedance,Electric Resistance,Impedance,Ohmic Resistance,Biolectric Impedance,Electrical Impedance,Electrical Resistance,Impedance, Bioelectrical,Impedance, Biolectric,Impedance, Electric,Impedance, Electrical,Ohmic Resistances,Resistance, Electric,Resistance, Electrical,Resistance, Ohmic,Resistances, Ohmic
D044085 Microfluidics The study of fluid channels and chambers of tiny dimensions of tens to hundreds of micrometers and volumes of nanoliters or picoliters. This is of interest in biological MICROCIRCULATION and used in MICROCHEMISTRY and INVESTIGATIVE TECHNIQUES. Microfluidic

Related Publications

Tamaghna Gupta, and Ritwick Ghosh, and Ranjan Ganguly
November 2015, Biomicrofluidics,
Tamaghna Gupta, and Ritwick Ghosh, and Ranjan Ganguly
August 2023, Physical review applied,
Tamaghna Gupta, and Ritwick Ghosh, and Ranjan Ganguly
June 2022, Polymers,
Tamaghna Gupta, and Ritwick Ghosh, and Ranjan Ganguly
August 2014, Biomedical microdevices,
Tamaghna Gupta, and Ritwick Ghosh, and Ranjan Ganguly
January 2005, ASAIO journal (American Society for Artificial Internal Organs : 1992),
Tamaghna Gupta, and Ritwick Ghosh, and Ranjan Ganguly
March 2014, Lab on a chip,
Tamaghna Gupta, and Ritwick Ghosh, and Ranjan Ganguly
February 1954, Klinicheskaia meditsina,
Tamaghna Gupta, and Ritwick Ghosh, and Ranjan Ganguly
January 1977, Transactions of the Royal Society of Tropical Medicine and Hygiene,
Tamaghna Gupta, and Ritwick Ghosh, and Ranjan Ganguly
October 2018, Journal of the Royal Society, Interface,
Copied contents to your clipboard!