Thalamocortical response transformation in the rat vibrissa/barrel system. 1989

D J Simons, and G E Carvell
Department of Physiology, School of Medicine, School of Health Related Professions, University of Pittsburgh, Pennsylvania 15261.

1. Extracellular single-unit recordings and controlled whisker stimuli were used to compare response properties between cells in the "barreloids" of the thalamic ventrobasal complex and those in the cytochrome oxidase-rich centers of the "barrels" in the first somatic sensory cortex. Individual vibrissae were deflected alone or in paired combination involving the neuron's maximally excitatory whisker and an adjacent one in the same or neighboring whisker rows. Quantitative data were derived from 135 thalamocortical unit's (TCUs), 242 "regular-spike" barrel units (RSUs), and 16 "fast-spike" barrel units (FSUs) recorded in 26 normal adult rats. 2. Compared with TCUs, RSUs displayed lower rates of spontaneous activity and responded less vigorously to whisker stimuli. Proportionally, more than twice as many TCUs as RSUs responded in slowly adapting fashion to at least one angular direction of whisker displacement. Discharges of slowly adapting TCUs were approximately 3.5 times greater than those of slowly adapting RSUs. 3. Proportionally, about twice as many TCUs than RSUs responded selectively to whisker movements in different angular directions. 4. Cells in the thalamus responded more vigorously to a larger number of whiskers than RSUs in the cortex. Depending on the stimulus conditions, two to three times more TCUs than RSUs were excited by two or more whiskers. 5. Following displacement of an adjacent whisker, unit discharges to subsequent deflections of the maximally excitatory whisker were reduced in a time-dependent fashion. The time course of response suppression was similar in TCUs and RSUs, but inhibitory interactions between adjacent whiskers were observed much less often in the thalamus. A cyclic pattern of stimulus-evoked excitation/inhibition characterizes responses in the cortical barrels but is considerably less pronounced in the thalamic barreloids. 6. The presence and/or degree of response suppression depended on which adjacent whisker was stimulated and on the angular direction of that whisker's movement. For individual TCUs, some adjacent whiskers evoked inhibition, others did not. The vast majority of RSUs displayed response suppression to all adjacent whiskers. Unlike receptive fields of TCUs, those of RSUs have small--i.e., single-whisker--excitatory centers with potent and symmetrical inhibitory surrounds. 7. Fast-spike units in the barrels displayed the greatest spontaneous and stimulus-evoked activities and were the least selective for whisker movements at different angular directions. FSUs had the largest excitatory receptive fields; 100% responded to two or more vibrissae.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

D J Simons, and G E Carvell
January 2008, Journal of neurophysiology,
D J Simons, and G E Carvell
April 1991, Brain research,
D J Simons, and G E Carvell
June 1992, Proceedings of the National Academy of Sciences of the United States of America,
D J Simons, and G E Carvell
April 1990, Journal of neurophysiology,
D J Simons, and G E Carvell
July 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D J Simons, and G E Carvell
January 2014, Frontiers in neural circuits,
D J Simons, and G E Carvell
October 2006, Journal of neurophysiology,
D J Simons, and G E Carvell
October 1992, Journal of neurophysiology,
D J Simons, and G E Carvell
September 1999, Journal of neurophysiology,
Copied contents to your clipboard!