Targeting small unilamellar liposomes to hepatic parenchymal cells by dose effect. 1989

D D Chow, and H E Essien, and M M Padki, and K J Hwang
School of Pharmacy, University of Southern California, Los Angeles.

A major research goal of liposome pharmacology is the selective delivery of drugs to target cell populations while minimizing extraction by phagocytic macrophages and blood monocytes of the reticuloendothelial system. The liver is an ideal organ for studying targeting strategies using a variety of liposomes, inasmuch as its discontinuous capillaries have fenestrae through which liposomes less than 0.2 microns in diameter may escape into the extravascular space. In a previous kinetic study, we proposed that the hepatic uptake of small unilamellar vesicles (SUV) in mice was compatible with a model of uptake involving dual, parallel pathways. One is a saturable, phagocytic pathway of uptake mediated by Kupffer cells, the other is a nonsaturable, pinocytotic pathway of uptake mediated by parenchymal cells, favoring the latter pathway at high liposomal dose (Beaumier et al., 1983). In the present study, we demonstrated by the techniques of liver cells fractionation that the uptake of either the bovine brain sphingomyelin/cholesterol (2:1; mole/mole) SUV or distearoyl phosphatidylcholine/cholesterol (2:1; mole/mole) SUV by hepatic parenchymal cells was enhanced markedly by increasing the amount of injected dose of SUV. As high as 85 to 90% of the total liver dose can be attributed to the uptake of SUV by the hepatic parenchymal cells alone, when the injected dose reaches at or above 7.5 to 10 micrograms of lipid per g b.wt. The dose effect on the uptake of liposomes by hepatocytes appears to be a general phenomenon of neutral SUV. Our data suggested that blockade by dose permits a feasible approach to target SUV to hepatic parenchymal cells.

UI MeSH Term Description Entries
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D004369 Pentetic Acid An iron chelating agent with properties like EDETIC ACID. DTPA has also been used as a chelator for other metals, such as plutonium. DTPA,Diethylenetriamine Pentaacetic Acid,Pentetates,Penthanil,Ca-DTPA,CaDTPA,CaNa-DTPA,Calcium Trisodium Pentetate,DETAPAC,Indium-DTPA,Mn-Dtpa,Pentacin,Pentacine,Pentaind,Pentetate Calcium Trisodium,Pentetate Zinc Trisodium,Sn-DTPA,Zinc-DTPA,Indium DTPA,Pentaacetic Acid, Diethylenetriamine,Pentetate, Calcium Trisodium,Zinc DTPA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013109 Sphingomyelins A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS. Sphingomyelin
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

D D Chow, and H E Essien, and M M Padki, and K J Hwang
April 1984, Biochemical Society transactions,
D D Chow, and H E Essien, and M M Padki, and K J Hwang
December 1986, Research communications in chemical pathology and pharmacology,
D D Chow, and H E Essien, and M M Padki, and K J Hwang
August 1990, Biotechnology and bioengineering,
D D Chow, and H E Essien, and M M Padki, and K J Hwang
June 1997, Human reproduction (Oxford, England),
D D Chow, and H E Essien, and M M Padki, and K J Hwang
January 2003, Methods in enzymology,
D D Chow, and H E Essien, and M M Padki, and K J Hwang
August 1998, Liver,
D D Chow, and H E Essien, and M M Padki, and K J Hwang
January 1994, Journal of microencapsulation,
D D Chow, and H E Essien, and M M Padki, and K J Hwang
January 1989, Doklady Akademii nauk SSSR,
D D Chow, and H E Essien, and M M Padki, and K J Hwang
October 2019, Small (Weinheim an der Bergstrasse, Germany),
D D Chow, and H E Essien, and M M Padki, and K J Hwang
July 1997, Biophysical journal,
Copied contents to your clipboard!