Cross-bridge dephosphorylation and relaxation of vascular smooth muscle. 1989

C M Hai, and R A Murphy
Department of Physiology, School of Medicine, University of Virginia, Charlottesville 22908.

We tested the hypothesis that relaxation in vascular smooth muscle is the result of inactivation of myosin light chain kinase and cross-bridge dephosphorylation. Fast neurally mediated contractions of swine carotid medial strips were induced by electrical field stimulation. Termination of the stimulus resulted in relaxation with a half time of 2 min. Nifedipine (0.1 microM) increased the relaxation rate without significant effects on the contractile response. Cross-bridge dephosphorylation was much faster than stress decay with basal levels reached within 1 min when 73% of the developed stress remained. The time-course data of dephosphorylation and stress were analyzed with a model that predicted the dependences of stress and isotonic shortening velocity on cross-bridge phosphorylation during contraction. Rate constants resolved from contraction data also fitted the relaxation data when the model's prediction was corrected for estimated errors in the phosphorylation measurements. Because Ca2+-dependent cross-bridge phosphorylation was the only postulated regulatory mechanism in the model, these results are consistent with the hypothesis that cross-bridge dephosphorylation is necessary and sufficient to explain relaxation in the swine carotid media.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002339 Carotid Arteries Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery. Arteries, Carotid,Artery, Carotid,Carotid Artery

Related Publications

C M Hai, and R A Murphy
February 1988, Journal of applied physiology (Bethesda, Md. : 1985),
C M Hai, and R A Murphy
January 1987, Progress in clinical and biological research,
C M Hai, and R A Murphy
January 1993, The American journal of physiology,
C M Hai, and R A Murphy
February 1989, The American journal of physiology,
C M Hai, and R A Murphy
May 1976, The American journal of physiology,
C M Hai, and R A Murphy
July 1987, Kidney international,
C M Hai, and R A Murphy
January 1990, Annals of the New York Academy of Sciences,
C M Hai, and R A Murphy
November 1994, Canadian journal of physiology and pharmacology,
C M Hai, and R A Murphy
February 1990, The American journal of physiology,
Copied contents to your clipboard!