DNA fork displacement rate measurements in heated Chinese hamster ovary cells. 1989

R S Wong, and L N Kapp, and W C Dewey
Radiation Oncology Research Laboratory, University of California, San Francisco 94143.

DNA fork displacement rates (FDR) were measured in Chinese hamster ovary (CHO) cells heated at either 43.5 degrees C or 45.5 degrees C for various times. The inhibition of fork movement rate by heat was both time and temperature dependent, i.e., 10-20 min at 43.5 degrees C or 5 min at 45.5 degrees C was required to decrease the FDR to 20-30% of the control rate of 1 micron/min. Following heating, the reduced FDR was found to be constant for at least 75 min. The observed effects of heat on reduced rates of DNA replicon initiation and chain elongation and the increase in DNA with single-stranded regions could be explained by the heat sensitivity of the FDR. Any of these alterations in the DNA replication process may lead to many opportunities for abnormal DNA and/or protein interactions to occur which ultimately may lead to the observed formation of chromosomal aberrations.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D012093 Replicon Any DNA sequence capable of independent replication or a molecule that possesses a REPLICATION ORIGIN and which is therefore potentially capable of being replicated in a suitable cell. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Replication Unit,Replication Units,Replicons,Unit, Replication,Units, Replication
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot

Related Publications

R S Wong, and L N Kapp, and W C Dewey
March 1984, Radiation research,
R S Wong, and L N Kapp, and W C Dewey
January 1987, Methods in enzymology,
R S Wong, and L N Kapp, and W C Dewey
November 1981, Biochimica et biophysica acta,
R S Wong, and L N Kapp, and W C Dewey
December 1985, Cell structure and function,
R S Wong, and L N Kapp, and W C Dewey
August 1977, Radiation research,
R S Wong, and L N Kapp, and W C Dewey
September 1987, Biochemistry and cell biology = Biochimie et biologie cellulaire,
R S Wong, and L N Kapp, and W C Dewey
November 1982, Cancer research,
R S Wong, and L N Kapp, and W C Dewey
December 1988, The Journal of biological chemistry,
R S Wong, and L N Kapp, and W C Dewey
October 1979, Chromosoma,
Copied contents to your clipboard!