Intracellular free magnesium and phosphorylated metabolites in hexokinase- and pyruvate kinase-deficient red cells measured using 31P-NMR spectroscopy. 1989

R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
Department of Haematology, University Hospital, Utrecht, The Netherlands.

The erythrocyte metabolism of two patients with nonspherocytic hemolytic anemia caused by a hexokinase deficiency, and a pyruvate kinase deficiency, respectively, were studied with NMR. The complexing of ATP and 2,3-diphosphoglycerate (2,3-DPG) with Mg2+ and hemoglobin (Hb) was determined using 31P-NMR on oxygenated and deoxygenated cells to investigate the influences of these enzyme defects on intracellular magnesium distribution and on Hb oxygen dissociation. In the pyruvate kinase-deficient red blood cells, the 2,3-DPG concentration was almost twice the normal value and the ATP concentration was near the lower limit of the normal range. In the hexokinase-deficient red cell population, the predominance of young cells masked the deficiency. Therefore, reticulocyte control cells were included in this study. In the oxygenated pyruvate kinase-deficient cells, the fraction of ATP that is complexed to magnesium as well as the free Mg2+ concentration were normal, despite the abnormal concentration of 2,3-DPG. In the deoxygenated cells the free Mg2+ concentration was lower than in normal cells. The fraction of Hb complexed with 2,3-DPG was higher than normal in both oxygenated and deoxygenated pyruvate kinase-deficient cells, in accordance with the high p50 of the oxygen-hemoglobin dissociation curve. In hexokinase-deficient cells, two major abnormalities are found: when the cells were deoxygenated, the concentration of ATP and 2,3-DPG fell. This was not observed for any other sample and could, therefore, be a consequence of the hexokinase deficiency. Despite almost normal levels of magnesium-binding metabolites, the free Mg2+ concentration in oxygenated and deoxygenated cels is much lower than in normal cells. This could be a cell-age-related phenomenon, since lower free Mg2+ concentrations were also found in reticulocyte control cells.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D004163 Diphosphoglyceric Acids Glyceric acids where two of the hydroxyl groups have been replaced by phosphates. Bisphosphoglycerates,Acids, Diphosphoglyceric
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006593 Hexokinase An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1. Hexokinase A,Hexokinase D,Hexokinase II
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
January 1983, Physiological chemistry and physics and medical NMR,
R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
October 1995, Journal of the American College of Nutrition,
R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
January 1975, Folia haematologica (Leipzig, Germany : 1928),
R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
November 1985, British journal of haematology,
R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
February 1987, Biochimica et biophysica acta,
R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
September 1994, International journal of peptide and protein research,
R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
May 1979, British journal of haematology,
R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
January 1995, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group,
R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
January 1979, American journal of hematology,
R Ouwerkerk, and C J van Echteld, and G E Staal, and G Rijksen
May 1990, Biotechnology and bioengineering,
Copied contents to your clipboard!