Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. 2018

Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
ATCC®, Manassas, VA 20110, USA.

The species within the Mycobacterium tuberculosis Complex (MTBC) have undergone numerous taxonomic and nomenclatural changes, leaving the true structure of the MTBC in doubt. We used next-generation sequencing (NGS), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) to investigate the relationship between these species. The type strains of Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii were sequenced via NGS. Pairwise dDDH and ANI comparisons between these, previously sequenced MTBC type strain genomes (including 'Mycobacterium canettii', 'Mycobacterium mungi' and 'Mycobacterium orygis') and M. tuberculosis H37RvT were performed. Further, all available genome sequences in GenBank for species in or putatively in the MTBC were compared to H37RvT. Pairwise results indicated that all of the type strains of the species are extremely closely related to each other (dDDH: 91.2-99.2 %, ANI: 99.21-99.92 %), greatly exceeding the respective species delineation thresholds, thus indicating that they belong to the same species. Results from the GenBank genomes indicate that all the strains examined are within the circumscription of H37RvT (dDDH: 83.5-100 %). We, therefore, formally propose a union of the species of the MTBC as M. tuberculosis. M. africanum, M. bovis, M. caprae, M. microti and M. pinnipedii are reclassified as later heterotypic synonyms of M. tuberculosis. 'M. canettii', 'M. mungi', and 'M. orygis' are classified as strains of the species M. tuberculosis. We further recommend use of the infrasubspecific term 'variant' ('var.') and infrasubspecific designations that generally retain the historical nomenclature associated with the groups or otherwise convey such characteristics, e.g. M. tuberculosis var. bovis.

UI MeSH Term Description Entries
D009169 Mycobacterium tuberculosis A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation. Mycobacterium tuberculosis H37Rv
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D015373 Bacterial Typing Techniques Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping. Bacteriocin Typing,Biotyping, Bacterial,Typing, Bacterial,Bacterial Biotyping,Bacterial Typing,Bacterial Typing Technic,Bacterial Typing Technics,Bacterial Typing Technique,Technic, Bacterial Typing,Technics, Bacterial Typing,Technique, Bacterial Typing,Techniques, Bacterial Typing,Typing Technic, Bacterial,Typing Technics, Bacterial,Typing Technique, Bacterial,Typing Techniques, Bacterial,Typing, Bacteriocin
D017422 Sequence Analysis, DNA A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis. DNA Sequence Analysis,Sequence Determination, DNA,Analysis, DNA Sequence,DNA Sequence Determination,DNA Sequence Determinations,DNA Sequencing,Determination, DNA Sequence,Determinations, DNA Sequence,Sequence Determinations, DNA,Analyses, DNA Sequence,DNA Sequence Analyses,Sequence Analyses, DNA,Sequencing, DNA

Related Publications

Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
October 1979, Kekkaku : [Tuberculosis],
Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
February 2012, Veterinary journal (London, England : 1997),
Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
March 1988, Journal of general microbiology,
Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
October 2015, International journal of systematic and evolutionary microbiology,
Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
October 1987, Infection and immunity,
Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
August 2006, Pathology,
Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
March 2002, International journal of systematic and evolutionary microbiology,
Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
August 1966, Annales de l'Institut Pasteur,
Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
September 2019, International journal of systematic and evolutionary microbiology,
Marco A Riojas, and Katya J McGough, and Cristin J Rider-Riojas, and Nalin Rastogi, and Manzour Hernando Hazbón
July 2015, International journal of systematic and evolutionary microbiology,
Copied contents to your clipboard!