Alternative Oxidase Isoforms Are Differentially Activated by Tricarboxylic Acid Cycle Intermediates. 2018

Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069 Osnabrueck, Germany j.selinski@latrobe.edu.au.

The cyanide-insensitive alternative oxidase (AOX) is a non-proton-pumping ubiquinol oxidase that catalyzes the reduction of oxygen to water and is posttranslationally regulated by redox mechanisms and 2-oxo acids. Arabidopsis (Arabidopsis thaliana) possesses five AOX isoforms (AOX1A-AOX1D and AOX2). AOX1D expression is increased in aox1a knockout mutants from Arabidopsis (especially after restriction of the cytochrome c pathway) but cannot compensate for the lack of AOX1A, suggesting a difference in the regulation of these isoforms. Therefore, we analyzed the different AOX isoenzymes with the aim to identify differences in their posttranslational regulation. Seven tricarboxylic acid cycle intermediates (citrate, isocitrate, 2-oxoglutarate, succinate, fumarate, malate, and oxaloacetate) were tested for their influence on AOX1A, AOX1C, and AOX1D wild-type protein activity using a refined in vitro system. AOX1C is insensitive to all seven organic acids, AOX1A and AOX1D are both activated by 2-oxoglutarate, but only AOX1A is additionally activated by oxaloacetate. Furthermore, AOX isoforms cannot be transformed to mimic one another by substituting the variable cysteine residues at position III in the protein. In summary, we show that AOX isoforms from Arabidopsis are differentially fine-regulated by tricarboxylic acid cycle metabolites (most likely depending on the amino-terminal region around the highly conserved cysteine residues known to be involved in regulation by the 2-oxo acids pyruvate and glyoxylate) and propose that this is the main reason why they cannot functionally compensate for each other.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D008293 Malates Derivatives of malic acid (the structural formula: (COO-)2CH2CHOH), including its salts and esters.
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D019343 Citric Acid A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Citrate,Anhydrous Citric Acid,Citric Acid Monohydrate,Citric Acid, Anhydrous,Uralyt U

Related Publications

Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
December 2004, International journal of sport nutrition and exercise metabolism,
Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
January 1955, Antonie van Leeuwenhoek,
Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
February 2024, Biomolecules,
Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
February 1968, Comparative biochemistry and physiology,
Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
September 1979, FEBS letters,
Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
January 1987, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
January 2021, Life (Basel, Switzerland),
Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
August 1956, Journal of bacteriology,
Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
April 1974, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Jennifer Selinski, and Andreas Hartmann, and Gabriele Deckers-Hebestreit, and David A Day, and James Whelan, and Renate Scheibe
November 1990, The American journal of physiology,
Copied contents to your clipboard!