Development of GATE Monte Carlo simulation for a CsI pixelated gamma camera dedicated to high resolution animal SPECT. 2018

Payvand Taherparvar, and Alireza Sadremomtaz
Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 41635-1914, Rasht, Gilan, 4193833697, Iran. p.taherparvar@gmail.com.

GATE is currently considered in scintigraphic imaging as a powerful tool to develop, design and optimize nuclear medicine modalities. This paper describes the GATE simulation of a pixelated gamma camera which is dedicated to high resolution of small animals imaging. It consists of a CsI(Na) crystal array coupled to position sensitive photomultiplier tube. The simulation model includes photon tracking through low energy high resolution hexagonal parallel holes collimator, CsI(Na) pixelated crystal, back-compartment, and camera shielding. Simulations were compared with experimental results by some criteria such as energy spectrum, energy resolution, spatial resolution, sensitivity and count profiles obtained from line and point sources imaging. The acquired energy resolution show good agreement with measured spectra. Difference between calculated and experimental values is about 0.3% for absolute sensitivity measurement. The result of the image uniformity is more consistent after implementation of non-uniformity correction. These values were about 1.3 and 1.2% for experimental and simulation study in the central field of view, respectively. Measurements showed that the spatial resolutions differences at the head surface along the long dimensions of gamma camera for simulation and experimental differed by no more than 4%.Differences along the short axis were about 6%. The FWHMs of images of point and line sources show good consistency between experimental images and corresponding simulated ones. The difference between experimental and simulated system parameters was within 11%. Our results demonstrate the ability and flexibility of the Monte Carlo simulation for modeling pixelated gamma camera with position sensitive detector by selecting the appropriate parameters for digitizer chain and collimator position on the detector surface.

UI MeSH Term Description Entries
D007454 Iodides Inorganic binary compounds of iodine or the I- ion. Iodide
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software
D015899 Tomography, Emission-Computed, Single-Photon A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image. CAT Scan, Single-Photon Emission,CT Scan, Single-Photon Emission,Radionuclide Tomography, Single-Photon Emission-Computed,SPECT,Single-Photon Emission-Computed Tomography,Tomography, Single-Photon, Emission-Computed,Single-Photon Emission CT Scan,Single-Photon Emission Computer-Assisted Tomography,Single-Photon Emission Computerized Tomography,CAT Scan, Single Photon Emission,CT Scan, Single Photon Emission,Emission-Computed Tomography, Single-Photon,Radionuclide Tomography, Single Photon Emission Computed,Single Photon Emission CT Scan,Single Photon Emission Computed Tomography,Single Photon Emission Computer Assisted Tomography,Single Photon Emission Computerized Tomography,Tomography, Single-Photon Emission-Computed
D015902 Gamma Cameras Electronic instruments that produce photographs or cathode-ray tube images of the gamma-ray emissions from organs containing radionuclide tracers. Scintillation Cameras,Nuclear Cameras,Scinti-Cameras,Camera, Gamma,Camera, Nuclear,Camera, Scintillation,Cameras, Gamma,Cameras, Nuclear,Cameras, Scintillation,Gamma Camera,Nuclear Camera,Scinti Cameras,Scinti-Camera,Scintillation Camera
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)

Related Publications

Payvand Taherparvar, and Alireza Sadremomtaz
January 2004, Physics in medicine and biology,
Payvand Taherparvar, and Alireza Sadremomtaz
July 2012, Radiological physics and technology,
Payvand Taherparvar, and Alireza Sadremomtaz
March 2019, Journal of medical imaging and radiation sciences,
Payvand Taherparvar, and Alireza Sadremomtaz
April 2012, Annals of nuclear medicine,
Payvand Taherparvar, and Alireza Sadremomtaz
August 2018, Nuclear medicine and molecular imaging,
Payvand Taherparvar, and Alireza Sadremomtaz
September 2023, EJNMMI physics,
Payvand Taherparvar, and Alireza Sadremomtaz
November 1998, Kaku igaku. The Japanese journal of nuclear medicine,
Payvand Taherparvar, and Alireza Sadremomtaz
December 2019, Scientific reports,
Payvand Taherparvar, and Alireza Sadremomtaz
December 2010, Journal of nuclear medicine technology,
Payvand Taherparvar, and Alireza Sadremomtaz
December 2010, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Copied contents to your clipboard!