Evaluation of disinfection by-product formation during chlor(am)ination from algal organic matter after UV irradiation. 2018

Shi Chen, and Jing Deng, and Lei Li, and Naiyun Gao
State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai, 200092, China.

This study evaluated the effect of low-pressure ultraviolet (UV) irradiation on the formation of disinfection by-products (DBPs) from algal organic matter of Microcystis aeruginosa during subsequent chlorination and chloramination. The algal organic matter includes extracellular organic matter (EOM) and intracellular organic matter (IOM). The fluorescence excitation-emission matrix spectra indicated that the humic/fulvic acid-like organics of EOM and the protein-like organics of IOM may be preferentially degraded by UV treatment. UV irradiation with low specific UV absorbance values was effective in reducing the formation of trihalomethanes and dichloroacetic acid from EOM and IOM during the subsequent chlorination. During the UV-chloramine process, higher UV dose (1000 mJ/cm2) led to the decrease of the formation of dichloroacetic acid, trichloroacetic acid, and haloketones from IOM by an average of 24%. Furthermore, UV irradiation can slightly increase the bromine substitution factors (BSFs) of haloacetic acids from EOM during chlorination, including dihaloacetic acids and trihaloacetic acids in the presence of bromide (50 μg/L). However, UV irradiation did not shift the formation of DBPs from IOM to more brominated species, since the BSFs of trihalomethanes, dihaloacetic acids, trihaloacetic acids, and dihaloacetonitriles almost kept unchanged during UV-chlorine process. As for UV-chloramine process, UV irradiation decreased the BSFs of trihalomethanes, while increased the BSFs of dihaloacetic acid for both EOM and IOM. Overall, the UV pretreatment process is a potential technology in treating algae-rich water.

UI MeSH Term Description Entries
D009930 Organic Chemicals A broad class of substances containing carbon and its derivatives. Many of these chemicals will frequently contain hydrogen with or without oxygen, nitrogen, sulfur, phosphorus, and other elements. They exist in either carbon chain or carbon ring form. Organic Chemical,Chemical, Organic,Chemicals, Organic
D001966 Bromine A halogen with the atomic symbol Br, atomic number 35, and atomic weight 79.904. It is a volatile reddish-brown liquid that gives off suffocating vapors, is corrosive to the skin, and may cause severe gastroenteritis if ingested. Bromine-79,Bromine 79
D002700 Chloramines Inorganic derivatives of ammonia by substitution of one or more hydrogen atoms with chlorine atoms or organic compounds with the general formulas R2NCl and RNCl2 (where R is an organic group). Chloroamines
D002713 Chlorine An element with atomic symbol Cl, atomic number 17, and atomic weight 35, and member of the halogen family. Chlorine Gas,Chlorine-35,Cl2 Gas,Chlorine 35,Gas, Chlorine,Gas, Cl2
D004203 Disinfection Rendering pathogens harmless through the use of heat, antiseptics, antibacterial agents, etc.
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D046931 Microcystis A form-genus of CYANOBACTERIA in the order Chroococcales. Many species are planktonic and possess gas vacuoles. Microcystis aeruginosa
D054879 Halogenation Covalent attachment of HALOGENS to other compounds. Bromination,Chlorination,Fluorination,Iodination,Iodation
D018508 Water Purification Any of several processes in which undesirable impurities in water are removed or neutralized; for example, chlorination, filtration, primary treatment, ion exchange, and distillation. It includes treatment of WASTEWATER to provide potable and hygienic water in a controlled or closed environment as well as provision of public drinking water supplies. Waste Water Purification,Waste Water Treatment,Wastewater Purification,Wastewater Treatment,Water Treatment,Purification, Waste Water,Purification, Wastewater,Purification, Water,Treatment, Waste Water,Treatment, Wastewater,Treatment, Water,Waste Water Purifications,Waste Water Treatments,Water Purification, Waste
D022882 Trihalomethanes Methanes substituted with three halogen atoms, which may be the same or different. Trihalomethane

Related Publications

Shi Chen, and Jing Deng, and Lei Li, and Naiyun Gao
December 2011, Journal of hazardous materials,
Shi Chen, and Jing Deng, and Lei Li, and Naiyun Gao
August 2023, Toxics,
Shi Chen, and Jing Deng, and Lei Li, and Naiyun Gao
December 2010, Water research,
Shi Chen, and Jing Deng, and Lei Li, and Naiyun Gao
October 2015, Ecotoxicology and environmental safety,
Shi Chen, and Jing Deng, and Lei Li, and Naiyun Gao
September 2022, The Science of the total environment,
Shi Chen, and Jing Deng, and Lei Li, and Naiyun Gao
February 2021, The Science of the total environment,
Shi Chen, and Jing Deng, and Lei Li, and Naiyun Gao
March 2017, Environmental science and pollution research international,
Shi Chen, and Jing Deng, and Lei Li, and Naiyun Gao
June 2006, Water research,
Copied contents to your clipboard!