Studies on mitochondrial Ca2+-transport and matrix Ca2+ using fura-2-loaded rat heart mitochondria. 1989

J G McCormack, and H M Browne, and N J Dawes
Department of Biochemistry, University of Leeds, U.K.

Rat heart mitochondria were incubated for 5 min at 30 degrees C and at approx. 40 mg protein.ml-1 and in the presence of 10 microM fura-2/AM. This allowed the entrapment of free fura-2 within the mitochondrial matrix and its use as a probe for Ca2+, but without affecting the apparent viability of the mitochondria. Parallel measurements of the activities of the intramitochondrial Ca2+-sensitive enzymes, pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase, allowed an assessment of their sensitivity to measured free Ca2+ within intact mitochondria incubated under different conditions; the enzymes responded to matrix Ca2+ over the approximate range 0.02-2 microM with half-maximal effects at about 0.3-0.6 microM Ca2+. Effectors of Ca2+-transport across the inner membrane (e.g., Na+, Mg2+, Ruthenium red, spermine) did not appear to affect these ranges, but did bring about expected changes in Ca2+ distribution across this membrane. Significantly, when mitochondria were incubated in the presence of physiological concentrations of both Na+ and Mg2+, and at low extramitochondrial Ca2+ (less than 400 nM), there was a gradient of Ca2+ (in:out) of less than unity; at higher extramitochondrial [Ca2+] (but still within the physiological range) the gradient was greater than unity indicating a highly cooperative nature of transmission of the Ca2+ signal into the matrix under such conditions.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007655 Ketoglutarate Dehydrogenase Complex 2-Keto-4-Hydroxyglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase Complex,Oxoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase Complex,2 Keto 4 Hydroxyglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase Complex,Complex, 2-Oxoglutarate Dehydrogenase,Complex, Ketoglutarate Dehydrogenase,Complex, alpha-Ketoglutarate Dehydrogenase,Dehydrogenase Complex, 2-Oxoglutarate,Dehydrogenase Complex, Ketoglutarate,Dehydrogenase Complex, alpha-Ketoglutarate,Dehydrogenase, 2-Keto-4-Hydroxyglutarate,Dehydrogenase, 2-Oxoglutarate,Dehydrogenase, Oxoglutarate,Dehydrogenase, alpha-Ketoglutarate,alpha Ketoglutarate Dehydrogenase,alpha Ketoglutarate Dehydrogenase Complex
D008297 Male Males
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001572 Benzofurans Compounds that contain a BENZENE ring fused to a furan ring. Coumarones,Diphenylbenzofuran

Related Publications

J G McCormack, and H M Browne, and N J Dawes
April 1991, Biochemical Society transactions,
J G McCormack, and H M Browne, and N J Dawes
December 1987, The Biochemical journal,
J G McCormack, and H M Browne, and N J Dawes
July 1992, Journal of molecular and cellular cardiology,
J G McCormack, and H M Browne, and N J Dawes
January 2007, Doklady. Biochemistry and biophysics,
J G McCormack, and H M Browne, and N J Dawes
January 1991, Annals of the New York Academy of Sciences,
J G McCormack, and H M Browne, and N J Dawes
August 1971, Archives internationales de physiologie et de biochimie,
J G McCormack, and H M Browne, and N J Dawes
August 1989, The Journal of biological chemistry,
J G McCormack, and H M Browne, and N J Dawes
December 1985, Biochimie,
Copied contents to your clipboard!