"In vitro" studies on galectin-3 in human natural killer cells. 2018

Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
Department of Pharmaceutical Sciences, University of "Piemonte Orientale, A. Avogadro", Largo Donegani 2, 28100 Novara, Italy. Electronic address: alvaro.brittoli@uniupo.it.

Galectin-3 (Gal-3) is a β-galactoside binding protein able to modulate both innate and adaptive immune responses. First identified in macrophages, Gal-3 has been studied widely in many mammalian immune cells, but scarcely in natural killer (NK) cells. The aim of this study was to analyze Gal-3 in human NK cells, isolated from peripheral blood mononuclear cells. Both PCR and RT-PCR analysis showed that resting human NK cells express Gal-3 mRNA, which can be modulated upon cytokine stimulation (100 U/ml IL-2 + 20 ng/ml IL-15) for different period of time (1-24 h). Western blot, cytofluorimetry, and confocal microscopy analysis clearly demonstrated that the Gal-3 gene can translate into the corresponding protein. From our results, resting NK cells, isolated from different healthy donors, can express high or low basal levels of Gal-3. In NK cells, Gal-3 was always intracellularly detected at both cytoplasm and nucleus levels, while never at the membrane surface, and its localization resulted independent from the cellular activation status. In addition, the intracellular Gal-3 can co-localize with perforin in exocytic vesicles. Cell treatment with a thiodigalactoside-based Gal-3 inhibitor (1-30 μM) slightly increased the number of degranulating NK cells, while it significantly increased the percentage of cells releasing high amounts of cytotoxic granules (+ 36 ± 3% vs. inhibitor-untreated cells at 30 μM Gal-3). In conclusion, our results demonstrate that human resting NK cells express Gal-3 at both gene and protein levels and that the Gal-3 expression can be modulated upon cytokine stimulation. In the same cells, Gal-3 always localizes intracellularly and functionally correlates with the degree of NK cell degranulation.

UI MeSH Term Description Entries
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000074084 THP-1 Cells A human leukemia monocytic cell line derived from a patient with LEUKEMIA, MONOCYTIC, ACUTE. It is used as a model to study the function of MONOCYTES and MACROPHAGES, their signaling pathways, nutrient and drug transport. THP-1 Cell Line,Cell Line, THP-1,Cell Lines, THP-1,Cell, THP-1,Cells, THP-1,THP 1 Cell Line,THP 1 Cells,THP-1 Cell,THP-1 Cell Lines
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D015550 Cell Degranulation The process of losing secretory granules (SECRETORY VESICLES). This occurs, for example, in mast cells, basophils, neutrophils, eosinophils, and platelets when secretory products are released from the granules by EXOCYTOSIS. Degranulation, Cell
D019169 Jurkat Cells A CELL LINE derived from human T-CELL LEUKEMIA and used to determine the mechanism of differential susceptibility to anti-cancer drugs and radiation. Cell, Jurkat,Cells, Jurkat,Jurkat Cell

Related Publications

Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
August 1984, Immunopharmacology,
Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
April 1983, Cancer research,
Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
January 1984, International journal of immunopharmacology,
Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
October 2008, Clinical immunology (Orlando, Fla.),
Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
January 2009, Rivista di biologia,
Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
June 1979, Transplantation proceedings,
Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
September 1997, Alcoholism, clinical and experimental research,
Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
December 2019, Life science alliance,
Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
August 2008, Blood,
Alvaro Brittoli, and Silvia Fallarini, and Hao Zhang, and Roland J Pieters, and Grazia Lombardi
January 1998, Archivum immunologiae et therapiae experimentalis,
Copied contents to your clipboard!