Tuning properties of auditory cortex cells in the awake squirrel monkey. 1989

R Pelleg-Toiba, and Z Wollberg
Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.

Pure tone bursts elicited in primary auditory cortex (AI) cells of the awake squirrel monkey a wide range of response patterns which consisted of one or more excitatory or inhibitory temporal response components. In almost 60% of these cells, response patterns were frequency and/or intensity dependent. Response components such as early and late onset excitation, offset excitation and on-off excitation; as well as tonic excitation or inhibition often varied independently with changes in these stimulus parameters. Individual cells were therefore considered as multiple bandpass filters, and each discrete response component was analyzed separately for its tuning properties. A correlation between best frequencies of the various excitatory components (BEF), and between BEFs and best frequencies of inhibitory components (BIF), in cells which responded with more than one discrete response component, disclosed a significantly higher correlation between BEF/BIF pairs compared with BEF/BEF pairs, presumably reflecting certain "lateral inhibition like" processes. Applying Q10dB factor, and square root of Hf-square root of Lf bandwidth at 10 dB above threshold, as measures of the "sharpness" of response areas, revealed that approximately 65% of all response areas could be defined as "narrow" by either one of these 2 measures, with no distinction, in that regard, between excitatory and inhibitory components. The average response bandwidths of the narrowly and the broadly tuned components, at 10 dB above threshold, were 0.4 +/- 0.18 and 1.42 +/- 0.68 octaves respectively. A comparison with the medial geniculate body (MGB) of the squirrel monkey, applying the square root of Hf-square root of Lf measure of sharpness of tuning, showed a significantly higher proportion of narrow response areas in the AI. "Narrow" response areas in both these regions were equally narrow, whereas the "broad" response areas of MGB cells were significantly broader. These results suggest a sharpening of response areas throughout the geniculo-cortical transformation.

UI MeSH Term Description Entries
D002427 Cebidae A family of New World monkeys in the infraorder PLATYRRHINI, consisting of nine subfamilies: ALOUATTINAE; AOTINAE; Atelinae; Callicebinae; CALLIMICONINAE; CALLITRICHINAE; CEBINAE; Pithecinae; and SAIMIRINAE. They inhabit the forests of South and Central America, comprising the largest family of South American monkeys. Platyrrhina,Platyrrhinas
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001301 Audiometry, Pure-Tone Measurement of hearing based on the use of pure tones of various frequencies and intensities as auditory stimuli. Audiometry, Bekesy,Audiometry, Pure Tone,Bekesy Audiometry,Pure-Tone Audiometry
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory
D012453 Saimiri A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies. Monkey, Squirrel,Squirrel Monkey,Monkeys, Squirrel,Saimirus,Squirrel Monkeys

Related Publications

R Pelleg-Toiba, and Z Wollberg
February 1974, Brain research,
R Pelleg-Toiba, and Z Wollberg
May 1968, Experimental neurology,
R Pelleg-Toiba, and Z Wollberg
February 1980, American journal of otolaryngology,
R Pelleg-Toiba, and Z Wollberg
October 1972, Experimental neurology,
R Pelleg-Toiba, and Z Wollberg
July 2005, The Laryngoscope,
R Pelleg-Toiba, and Z Wollberg
June 1978, Experimental brain research,
R Pelleg-Toiba, and Z Wollberg
August 2011, Journal of neurophysiology,
Copied contents to your clipboard!