Photoaffinity labeling of the lumenal K+ site of the gastric (H+ + K+)-ATPase. 1989

D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
Smith Kline & French (Research) Ltd., Welwyn, Herts, United Kingdom.

A photoaffinity label for the lumenal K+ site of the gastric (H+ + K+)-ATPase has been identified. Seven azido derivatives based upon the reversible K+ site inhibitor SCH 28080 were studied, one of which, m-ATIP (8-(3-azidophenylmethoxy)-1,2,3-trimethylimidazo[1,2-a] pyridinium iodide), was subsequently synthesized in radiolabeled form. In the absence of UV irradiation, m-ATIP inhibited K+ -stimulated ATPase activity in lyophilized gastric vesicles competitively with respect to K+, with a Ki value of 2.4 microM at pH 7.0. Irradiation of lyophilized gastric vesicles at pH 7.0 with [14C]m-ATIP in the presence of 0.2 mM ATP resulted in a time-dependent inactivation of ATPase activity that was associated with an incorporation of radioactivity into a 100-kDa polypeptide representing the catalytic subunit of the (H+ + K+)-ATPase. Both inactivation and incorporation were blocked in the presence of 10 mM KCl but not with 10 mM NaCl, consistent with interaction at the K+ site. The level of incorporation required to produce complete inhibition of ATPase activity was 1.9 +/- 0.2 times the number of catalytic phosphorylation sites in the same preparation. Tryptic digestion of gastric vesicle membranes, labeled with [14C]m-ATIP, failed to release the radioactivity from the membranes suggesting that the site of interaction was close to or within the membrane-spanning sections of this ion pump.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide

Related Publications

D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
November 1989, Archives of biochemistry and biophysics,
D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
September 1984, The Journal of experimental zoology,
D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
August 1984, The Journal of biological chemistry,
D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
January 1989, Scandinavian journal of gastroenterology. Supplement,
D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
December 1986, Biochimie,
D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
May 1990, Seikagaku. The Journal of Japanese Biochemical Society,
D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
October 2011, Comprehensive Physiology,
D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
June 2001, Biochemistry,
D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
January 1988, Progress in clinical and biological research,
D J Keeling, and C Fallowfield, and K M Lawrie, and D Saunders, and S Richardson, and R J Ife
January 1990, Journal of internal medicine. Supplement,
Copied contents to your clipboard!