Naloxone does not affect muscle blood flow during low intensity exercise in rats. 1989

S J Mohrman, and D F Peterson, and M H Laughlin
Department of Veterinary Biomedical Sciences, University of Missouri, Columbia 65211.

The purpose of this study was to determine whether endogenous opioids are involved in the control of skeletal muscle blood flow during locomotory exercise in rats. The radiolabeled miscrosphere technique was used to measure total and regional muscle blood flow. We first determined whether methionine enkephalin (1,000 micrograms.kg-1 I.V.) would produce vasodilation in muscle vascular beds. We found that methionine enkephalin produced a 36 mm Hg (range of 20-50 mm Hg) drop in mean arterial pressure (Pa), which was associated with decreases in calculated skeletal muscle vascular resistance in anesthetized rats, and that these effects on arterial pressure and skeletal muscle vascular resistance were blocked by the infusion of naloxone (10 micrograms.kg-1). Measurements were then made at 5 min of treadmill exercise at 15 m.min-1 (0 degree incline) and following exercise in both saline-treated (controls) and naloxone (10 micrograms.kg-1)-treated conscious rats. There were no differences between the heart rates, blood pressures, or total muscle blood flows of the two groups. There were also no significant differences between the blood flows to 32 hind limb muscle samples composed of various muscle fiber types. Since naloxone blockade did not affect total or regional muscle blood flow during low intensity exercise, it appears that the endogenous opioids are not required for the normal exercise hyperemia of skeletal muscles.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D004744 Enkephalin, Methionine One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Methionine Enkephalin,5-Methionine Enkephalin,Met(5)-Enkephalin,Met-Enkephalin,5 Methionine Enkephalin,Enkephalin, 5-Methionine,Met Enkephalin
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S J Mohrman, and D F Peterson, and M H Laughlin
March 2010, American journal of physiology. Regulatory, integrative and comparative physiology,
S J Mohrman, and D F Peterson, and M H Laughlin
August 2023, Journal of applied physiology (Bethesda, Md. : 1985),
S J Mohrman, and D F Peterson, and M H Laughlin
March 2020, Journal of applied physiology (Bethesda, Md. : 1985),
S J Mohrman, and D F Peterson, and M H Laughlin
March 2009, Journal of sports sciences,
S J Mohrman, and D F Peterson, and M H Laughlin
June 2020, Physical activity and nutrition,
S J Mohrman, and D F Peterson, and M H Laughlin
September 2007, Journal of applied physiology (Bethesda, Md. : 1985),
S J Mohrman, and D F Peterson, and M H Laughlin
November 2010, Journal of strength and conditioning research,
S J Mohrman, and D F Peterson, and M H Laughlin
September 1988, The American journal of cardiology,
S J Mohrman, and D F Peterson, and M H Laughlin
March 1985, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!