The evolutionary characteristics and structural biology of Gallus toll-like receptor 21. 2018

Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian, Beijing, 100194, China.

Toll-like receptors (TLRs) are an important part of the innate immune system, acting as a first line of defense against many invading pathogens. The ligand known to bind Gallus toll-like receptor 21 (gTLR21) is the unmethylated cytosine phosphate guanine dideoxy nucleotide motif; however, the evolutionary characteristics and structural biology of gTLR21 are poorly elaborated. Our results suggest that gTLR21 is phylogenetically and evolutionarily related to the TLR11 family and is perhaps a close ortholog of the Mus TLR13. Structural biology of homology modeling of the gTLR21 ectodomain structure suggests that it has no Z-loop like that seen in Mus TLR9. The cytosolic toll-IL-1 receptor region of gTLR21 contains a central 4-stranded parallel β-sheet (βA-βD) surrounded by 5 α-helices (αA-αE) on both sides, a highly conserved structure also seen in other TLRs. Molecular docking analysis reveals that the gTLR21 ectodomain has the potential to distinguish between different ligands. Homodimer analysis results also suggest that Phe842 and Pro844 of the BB loop and Cys876 of the αC helix in gTLR21 are conserved in other cytosolic toll-IL-1 receptor domains of other TLRs and may contribute to the docking of homodimers. Our study on the evolutionary characteristics and structural biology of gTLR21 reveals that the molecule may have a broader role to play in innate immune system; however, further experimental validation is required to confirm our findings.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D051193 Toll-Like Receptors A family of pattern recognition receptors characterized by an extracellular leucine-rich domain and a cytoplasmic domain that share homology with the INTERLEUKIN 1 RECEPTOR and the DROSOPHILA toll protein. Following pathogen recognition, toll-like receptors recruit and activate a variety of SIGNAL TRANSDUCING ADAPTOR PROTEINS. Receptors, Toll-Like,Toll-Like Receptor,Receptor, Toll-Like,Receptors, Toll Like,Toll Like Receptor,Toll Like Receptors
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D062105 Molecular Docking Simulation A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein. Molecular Docking,Molecular Docking Simulations,Molecular Docking Analysis,Analysis, Molecular Docking,Docking Analysis, Molecular,Docking Simulation, Molecular,Docking, Molecular,Molecular Docking Analyses,Molecular Dockings,Simulation, Molecular Docking
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic

Related Publications

Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
January 2016, PeerJ,
Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
January 2011, Annual review of biochemistry,
Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
April 2011, Structure (London, England : 1993),
Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
July 2018, Molecular biology and evolution,
Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
January 2021, Journal of immunology research,
Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
February 2020, Veterinary immunology and immunopathology,
Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
November 2012, Fish & shellfish immunology,
Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
January 2012, Wiley interdisciplinary reviews. Systems biology and medicine,
Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
January 2020, Genome biology and evolution,
Hongping Wu, and Hai Wang, and Wuqi Jiang, and Zhengxing Lian
January 2016, Veterinary immunology and immunopathology,
Copied contents to your clipboard!